marketTrade/notebooks/RiskManager.ipynb
2024-03-15 20:13:43 +01:00

79 lines
1.9 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ad08f522",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import datetime\n",
"import numpy as np\n",
"import random"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "b9b18667",
"metadata": {},
"outputs": [],
"source": [
"class riskManager:\n",
" \n",
" def __init__(self,commision=0.04):\n",
" self.commision = commision\n",
" pass\n",
" def getDecision(self,signalDecision,probabilityDecision, price, deals=None) -> dict:\n",
" ans = {}\n",
" if probabilityDecision['trande'] == 'up':\n",
" ans['decision'] = 'buy'\n",
" ans['amount'] = 1\n",
" elif probabilityDecision['trande'] == 'none':\n",
" ans['decision'] = 'none'\n",
" elif probabilityDecision['trande'] == 'down': \n",
" for i in deals.shape[0]:\n",
" ans['decision'] = 'None'\n",
" ans['deals'] = []\n",
" row = deals.iloc[i]\n",
" if row.startPrice < price*pow(1+self.commission,2):\n",
" ans['decision'] = 'sell'\n",
" ans['deals'].append(row.name)\n",
" return ans\n",
" \n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8f5dd64e",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}