marketTrade/market_trade/core/trandeVoter.py
Mark 00c7614bfc fix: correct class name typos and variable naming issues
Fix critical typos in class names and variables that could cause confusion
and runtime errors.

Class name fixes:
- trandeVoter → TradeVoter (market_trade/core/trandeVoter.py)
- decsionManager → DecisionManager (market_trade/core/decisionManager_v2.py)
- coreSignalTrande → CoreSignalTrade (market_trade/core/signals_v2.py)
- coreIndicator → CoreIndicator (market_trade/core/indicators_v2.py)
- indicatorsAgrigator → IndicatorsAggregator (indicators_v2.py)
- signalsAgrigator → SignalsAggregator (signals_v2.py)
- riskManager → RiskManager (market_trade/core/riskManager.py)

Variable typo fixes:
- commision → commission (riskManager.py, lines 8-9, 24)
- probabilityDecsion → probability_decision (decisionManager_v2.py:84)

Type hint corrections:
- Fixed pd.DataFrame() → pd.DataFrame (incorrect syntax in 4 files)

Bug fixes:
- Fixed mutable default argument antipattern in indicators_v2.py:33
  (indDict={} → indDict=None)
- Fixed mutable default argument in CoreTradeMath.py:22
  (params={} → params=None)

All class references updated throughout the codebase to maintain
consistency.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-24 18:34:51 +01:00

75 lines
3.6 KiB
Python

import pandas as pd
import datetime
import numpy as np
#import random
class TradeVoter():
def __init__(self, name):
self.name = name # Instance identifier
self.trade_values_list = ['up', 'none', 'down'] # Valid trade directions
self.matrix_amounts = None # Sum matrix for signal combinations
self.keys_matrix_amounts = None # Matrix keys, technical field
self.matrix_probability = None # Probability matrix for decision making
# Function to create DataFrame with specified columns and indices. Indices are unique combinations.
def create_df_by_names(self, names_index, column_names, default_value=0.0):
df = pd.DataFrame(dict.fromkeys(column_names, [default_value]*pow(3, len(names_index))),
index=pd.MultiIndex.from_product([self.trade_values_list]*len(names_index), names=names_index)
)
return df
# Create sum matrix with default value
def create_matrix_amounts(self, names_index: list) -> pd.DataFrame:
self.matrix_amounts = self.create_df_by_names(names_index, self.trade_values_list, 0)
self.keys_matrix_amounts = self.matrix_amounts.to_dict('tight')['index_names']
self.create_matrix_probability(names_index)
return self.matrix_amounts
# Create probability matrix with default value
def create_matrix_probability(self, names_index: list) -> pd.DataFrame:
self.matrix_probability = self.create_df_by_names(names_index, self.trade_values_list)
return self.matrix_probability
# Set values in sum matrix. signalDecisions - indicator values key:value; trande - actual value
def set_decision_by_signals(self, signal_decisions: dict, trande: str) -> None:
buff = []
for i in self.keys_matrix_amounts:
buff.append(signal_decisions[i])
self.matrix_amounts.loc[tuple(buff), trande] += 1
# Fill probability matrix with calculated values from sum matrix
def generate_matrix_probability(self) -> None:
for i in range(self.matrix_amounts.shape[0]):
print(self.matrix_amounts)
row_sum = sum(self.matrix_amounts.iloc[i]) + 1
self.matrix_probability.iloc[i]['up'] = self.matrix_amounts.iloc[i]['up'] / row_sum
self.matrix_probability.iloc[i]['none'] = self.matrix_amounts.iloc[i]['none'] / row_sum
self.matrix_probability.iloc[i]['down'] = self.matrix_amounts.iloc[i]['down'] / row_sum
# Get decision from probability matrix based on signal values
def get_decision_by_signals(self, signal_decisions: dict) -> dict:
ans = {}
splice_search = self.matrix_probability.xs(tuple(signal_decisions.values()),
level=list(signal_decisions.keys())
)
ans['probability'] = splice_search.to_dict('records')[0]
ans['trande'] = splice_search.iloc[0].idxmax()
return ans
# Get probability and sum matrices as dictionaries
def get_matrix_dict(self) -> dict:
ans = {}
ans['amounts'] = self.matrix_amounts.to_dict('tight')
ans['probability'] = self.matrix_probability.to_dict('tight')
return ans
# Set probability and sum matrices from dictionaries
def set_matrix_dict(self, matrix_dict: dict) -> dict:
if matrix_dict['amounts'] != None:
self.matrix_amounts = pd.DataFrame.from_dict(y['amounts'], orient='tight')
if matrix_dict['probability'] != None:
self.matrix_probability = pd.DataFrame.from_dict(y['probability'], orient='tight')