189 lines
5.6 KiB
Python
189 lines
5.6 KiB
Python
|
|
import pandas as pd
|
|
import datetime
|
|
import numpy as np
|
|
import plotly as pl
|
|
import plotly.graph_objs as go
|
|
import matplotlib.pyplot as plt
|
|
import math
|
|
import scipy
|
|
import random
|
|
import statistics
|
|
|
|
|
|
import datetime
|
|
import matplotlib.dates as mdates
|
|
import matplotlib.pyplot as plt
|
|
|
|
import mplfinance as mpf
|
|
|
|
import plotly
|
|
#import plotly.plotly as py
|
|
import plotly.graph_objs as go
|
|
# these two lines allow your code to show up in a notebook
|
|
from plotly.offline import init_notebook_mode, iplot
|
|
from plotly.subplots import make_subplots
|
|
import CoreDraw
|
|
init_notebook_mode()
|
|
import CoreTraidMath
|
|
import plotly.express as px
|
|
|
|
|
|
class Ishimoku:
|
|
|
|
def __init__(self, base_df, options={
|
|
'dataType':'ohcl',
|
|
'short':9,
|
|
'middle':26,
|
|
'long':52,
|
|
'backstep':26,
|
|
'forwardstep':26
|
|
},needFig=False,showOnlyIndex=True,drawFig=False
|
|
):
|
|
|
|
self.base_df=base_df.reset_index(drop=True)
|
|
self.options=options
|
|
|
|
self.ans=self.getAns()
|
|
if needFig:
|
|
self.fig=self.pltShow(showOnlyIndex,drawFig)
|
|
|
|
|
|
def getTankenSen(self):
|
|
y=np.asarray([])
|
|
x=np.asarray([])
|
|
for i in range(self.options['short'],self.base_df.shape[0]):
|
|
maxValue=max(self.base_df['high'][i-self.options['short']:i])
|
|
minValue=min(self.base_df['low'][i-self.options['short']:i])
|
|
y=np.append(y,(maxValue+minValue)*0.5)
|
|
x=np.append(x,self.base_df['date'][i])
|
|
#ts.append(max(self.base_df[self.options['colName']['high']][i-self.options['short']:i]))
|
|
ans={'y':y,'x':x}
|
|
return(ans)
|
|
|
|
def getKijunSen(self):
|
|
y=np.asarray([])
|
|
x=np.asarray([])
|
|
for i in range(self.options['middle'],self.base_df.shape[0]):
|
|
maxValue=max(self.base_df['high'][i-self.options['middle']:i])
|
|
minValue=min(self.base_df['low'][i-self.options['middle']:i])
|
|
y=np.append(y,(maxValue+minValue)*0.5)
|
|
x=np.append(x,self.base_df['date'][i])
|
|
#ts.append(max(self.base_df[self.options['colName']['high']][i-self.options['short']:i]))
|
|
ans={'y':y,'x':x}
|
|
return(ans)
|
|
|
|
def getChinkoSpan(self):
|
|
y=np.asarray(self.base_df['close'][self.options['backstep']:])
|
|
x=np.asarray(self.base_df['date'][:self.base_df.shape[0]-self.options['backstep']])
|
|
ans={'y':y,'x':x}
|
|
return(ans)
|
|
|
|
def getSenkouSpanA(self, data):
|
|
y=np.asarray([])
|
|
x=np.asarray([])
|
|
shift=len(data['TankenSen']['y'])-len(data['KijunSen']['y'])
|
|
for i in range(len(data['KijunSen']['x'])-self.options['forwardstep']):
|
|
y=np.append(y,(data['KijunSen']['y'][i]+data['TankenSen']['y'][i+shift])*0.5)
|
|
x=np.append(x,data['KijunSen']['x'][i+self.options['forwardstep']])
|
|
|
|
ans={'y':y,'x':x}
|
|
return(ans)
|
|
|
|
def getSenkouSpanB(self):
|
|
y=np.asarray([])
|
|
x=np.asarray([])
|
|
for i in range(self.options['long'],self.base_df.shape[0]-self.options['forwardstep']):
|
|
maxValue=max(self.base_df['high'][i-self.options['long']:i])
|
|
minValue=min(self.base_df['low'][i-self.options['long']:i])
|
|
y=np.append(y,(maxValue+minValue)*0.5)
|
|
x=np.append(x,self.base_df['date'][i+self.options['forwardstep']])
|
|
#ts.append(max(self.base_df[self.options['colName']['high']][i-sel
|
|
|
|
ans={'y':y,'x':x}
|
|
return(ans)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def getAns(self):
|
|
ans={}
|
|
ans['TankenSen']=self.getTankenSen()
|
|
ans['KijunSen']=self.getKijunSen()
|
|
ans['ChinkoSpan']=self.getChinkoSpan()
|
|
ans['SenkouSpanA']=self.getSenkouSpanA(ans)
|
|
ans['SenkouSpanB']=self.getSenkouSpanB()
|
|
#print(ans)
|
|
return(ans)
|
|
|
|
|
|
def pltShow(self,showOnlyIndex,drawFig):
|
|
ans=None
|
|
req=[]
|
|
|
|
req.append({
|
|
'vtype':'Scatter',
|
|
'df':pd.DataFrame(
|
|
{'value':self.ans['TankenSen']['y'],'date':self.ans['TankenSen']['x']}) ,
|
|
'row':1,
|
|
'col':1,
|
|
'name':'TankenSen'
|
|
|
|
})
|
|
|
|
req.append({
|
|
'vtype':'Scatter',
|
|
'df':pd.DataFrame(
|
|
{'value':self.ans['KijunSen']['y'],'date':self.ans['KijunSen']['x']}) ,
|
|
'row':1,
|
|
'col':1,
|
|
'name':'KijunSen'
|
|
|
|
})
|
|
|
|
req.append({
|
|
'vtype':'Scatter',
|
|
'df':pd.DataFrame(
|
|
{'value':self.ans['ChinkoSpan']['y'],'date':self.ans['ChinkoSpan']['x']}) ,
|
|
'row':1,
|
|
'col':1,
|
|
'name':'ChinkoSpan'
|
|
|
|
})
|
|
|
|
req.append({
|
|
'vtype':'Scatter',
|
|
'df':pd.DataFrame(
|
|
{'value':self.ans['SenkouSpanA']['y'],'date':self.ans['SenkouSpanA']['x']}) ,
|
|
'row':1,
|
|
'col':1,
|
|
'name':'SenkouSpanA'
|
|
|
|
})
|
|
req.append({
|
|
'vtype':'Scatter',
|
|
'df':pd.DataFrame(
|
|
{'value':self.ans['SenkouSpanB']['y'],'date':self.ans['SenkouSpanB']['x']}) ,
|
|
'row':1,
|
|
'col':1,
|
|
'name':'SenkouSpanB'
|
|
|
|
})
|
|
|
|
|
|
if not showOnlyIndex:
|
|
req.append({
|
|
'vtype':'OCHL',
|
|
'df':self.base_df,
|
|
'row':1,
|
|
'col':1,
|
|
'name':'OHCL'
|
|
|
|
})
|
|
self.figDict=req
|
|
ans = CoreDraw.coreDraw(req,drawFig)
|
|
#print(ans)
|
|
return ans
|