marketTrade/notebooks/autogen/indicators_v2.py

195 lines
3.0 KiB
Python

#!/usr/bin/env python
# coding: utf-8
# In[8]:
import pandas as pd
import datetime
import numpy as np
import CoreTraidMath
# In[9]:
df_candle = pd.read_csv(r"../data/EURUSD_price_candlestick.csv")
df_candle.rename(columns={'timestamp': 'date'}, inplace=True)
df_candle
# In[10]:
class coreIndicator():
def __init__(self,options: dict, dataType: str = None, predictType: str = None, name: str = None):
self.options = options
self.dataType = dataType #ochl
self.predictType = predictType #trend
def getAns(self, data: pd.DataFrame() ):
return "ERROR"
# In[11]:
class ind_BB(coreIndicator):
"""
options
MeanType -> SMA
window -> int
valueType -> str: low, high, open, close
kDev -> float
"""
def __init__(self,options: dict,name = None):
super().__init__(
options = options,
dataType = 'ochl',
predictType = 'trend',
name = name
)
def getAns(self, data: pd.DataFrame()):
data=data.reset_index(drop=True)
ans={}
opMA={'dataType':'ohcl',
'action':'findMean',
'actionOptions':{
'MeanType':self.options['MeanType'],
'valueType':self.options['valueType'],
'window':self.options['window']
}
}
ans['BB']=CoreTraidMath.CoreMath(data,opMA).ans
opSTD={'dataType':'ohcl',
'action':'findSTD',
'actionOptions':{'valueType':self.options['valueType'],'window':self.options['window']}
}
ans['STD']=CoreTraidMath.CoreMath(data,opSTD).ans
ans['pSTD']=ans['BB']+ans['STD']*self.options['kDev']
ans['mSTD']=ans['BB']-ans['STD']*self.options['kDev']
ans['x']=np.array(data['date'][self.options['window']-1:].to_list())
self.ans= ans
return ans
# In[12]:
class indicatorsAgrigator:
def __init__ (self,indDict={}):
self.indDict = indDict
self.indInst = {}
self.ans={}
self.createIndicatorsInstance()
def createIndicatorsInstance(self):
for i in self.indDict.keys():
self.indInst[i]=self.indDict[i]['className'](self.indDict[i]['params'])
def getAns(self,dataDict={}):
ans={}
for i in dataDict.keys():
ans[i] = self.indInst[i].getAns(dataDict[i])
return ans
# In[13]:
indicators = {
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5}
}
}
dataDic={
'ind_BB':df_candle[:1000]
}
# In[ ]:
# In[14]:
ia= indicatorsAgrigator(indicators)
# In[15]:
ia.__dict__
# In[16]:
ia.indInst['ind_BB'].__dict__
# In[17]:
ia.getAns(dataDict=dataDic)
# In[ ]:
# In[ ]:
# In[18]:
op = {'MeanType':'SMA','window':5,'valueType':'low','kDev':2}
# In[19]:
t = ind_BB(op)
# In[20]:
t.getAns(df_candle[:100])
# In[21]:
t.__dict__
# In[ ]:
# In[ ]: