268 lines
5.6 KiB
Python
268 lines
5.6 KiB
Python
#!/usr/bin/env python
|
|
# coding: utf-8
|
|
|
|
# In[2]:
|
|
|
|
|
|
import pandas as pd
|
|
import datetime
|
|
import numpy as np
|
|
#import plotly as pl
|
|
|
|
#import plotly.graph_objs as go
|
|
#from plotly.offline import init_notebook_mode, iplot
|
|
#from plotly.subplots import make_subplots
|
|
#init_notebook_mode()
|
|
|
|
import CoreTraidMath
|
|
import CoreDraw
|
|
|
|
|
|
# In[3]:
|
|
|
|
|
|
class coreIndicator():
|
|
def __init__(self,
|
|
data=pd.DataFrame(),
|
|
options={},
|
|
showMode='None',
|
|
):
|
|
'''
|
|
showMode = None/Ind/PartOf
|
|
'''
|
|
self.data=data
|
|
self.showMode=showMode
|
|
self.options=options
|
|
self.overlayInd=None #True/False
|
|
self.ans=None
|
|
self.figDict=None
|
|
|
|
def getAns(self,data=None):
|
|
if type(data)!=type(None):
|
|
self.data=data
|
|
self.ans=self.getCalculate()
|
|
if self.showMode=='Ind' or self.showMode=='PartOf':
|
|
self.figDict=self.getFigDict()
|
|
if self.showMode=='Ind':
|
|
self.getFig()
|
|
return self.ans
|
|
def getFig(self,row=1):
|
|
CoreDraw.coreDraw(self.figDict,True)
|
|
def getCalculate(self):
|
|
return "Error"
|
|
def getFigDict(self):
|
|
return "Error"
|
|
|
|
class indicatorAgrigator():
|
|
'''
|
|
Тема чисто для отладки
|
|
jj=indicatorAgrigator().runAll([o1,o2],df_candle[:30])
|
|
#jj.createIndFromList([o1,o2])
|
|
#jj.calculateInd(df_candle[:30])
|
|
|
|
'''
|
|
def __init__(self):
|
|
self.indList=None
|
|
self.data=None
|
|
def createInd(self,classDict):
|
|
return classDict['name'](
|
|
options=classDict['params'],
|
|
showMode=classDict['showMode']
|
|
)
|
|
|
|
|
|
def createIndFromList(self,indList):
|
|
self.indList=indList
|
|
ans=[]
|
|
for i in self.indList:
|
|
ans.append(self.createInd(i))
|
|
self.indList=ans
|
|
return ans
|
|
|
|
def calculateInd(self,data):
|
|
self.data=data
|
|
for i in self.indList:
|
|
#i.getAns(data)
|
|
i.data=self.data
|
|
i.ans=i.getCalculate()
|
|
i.figDict=i.getFigDict()
|
|
#i.getFig()
|
|
def agrigateFig(self):
|
|
req=[[]]
|
|
|
|
for i in self.indList:
|
|
if i.overlayInd==True:
|
|
req[0].append(i)
|
|
else:
|
|
req.append([i])
|
|
CoreDraw.agrigateFig(req,True)
|
|
def runAll(self,indList,df,needDraw=False):
|
|
self.createIndFromList(indList)
|
|
self.calculateInd(df)
|
|
if needDraw:
|
|
self.agrigateFig()
|
|
|
|
|
|
|
|
|
|
|
|
# In[4]:
|
|
|
|
|
|
class ind_BB(coreIndicator):
|
|
|
|
def getCalculate(self):
|
|
self.overlayInd=True
|
|
ans={}
|
|
opMA={'dataType':'ohcl',
|
|
'action':'findMean',
|
|
'actionOptions':{
|
|
'MeanType':self.options['MeanType'],
|
|
'valueType':self.options['valueType'],
|
|
'window':self.options['window']
|
|
}
|
|
}
|
|
ans['BB']=CoreTraidMath.CoreMath(self.data,opMA).ans
|
|
opSTD={'dataType':'ohcl',
|
|
'action':'findSTD',
|
|
'actionOptions':{'valueType':self.options['valueType'],'window':self.options['window']}
|
|
}
|
|
ans['STD']=CoreTraidMath.CoreMath(self.data,opSTD).ans
|
|
ans['pSTD']=ans['BB']+ans['STD']*self.options['kDev']
|
|
ans['mSTD']=ans['BB']-ans['STD']*self.options['kDev']
|
|
ans['x']=np.array(self.data['date'][self.options['window']-1:].to_list())
|
|
return ans
|
|
def getFigDict(self,row=1):
|
|
req=[]
|
|
|
|
req.append({
|
|
'vtype':'Scatter',
|
|
'df':pd.DataFrame(
|
|
{'value':self.ans['BB'],'date':self.ans['x']}) ,
|
|
'row':row,
|
|
'col':1,
|
|
'name':'BB'
|
|
|
|
})
|
|
req.append({
|
|
'vtype':'Scatter',
|
|
'df':pd.DataFrame(
|
|
{'value':self.ans['pSTD'],'date':self.ans['x']}) ,
|
|
'row':row,
|
|
'col':1,
|
|
'name':'pSTD'
|
|
|
|
})
|
|
req.append({
|
|
'vtype':'Scatter',
|
|
'df':pd.DataFrame(
|
|
{'value':self.ans['mSTD'],'date':self.ans['x']}) ,
|
|
'row':row,
|
|
'col':1,
|
|
'name':'mSTD'
|
|
|
|
})
|
|
|
|
return req
|
|
|
|
|
|
# In[5]:
|
|
|
|
|
|
class ind_OCHL(coreIndicator):
|
|
def getCalculate(self):
|
|
self.overlayInd=True
|
|
def getFigDict(self,row=1):
|
|
req=[]
|
|
|
|
req.append({
|
|
'vtype':'OCHL',
|
|
'df':self.data,
|
|
'row':1,
|
|
'col':1,
|
|
'name':'OHCL'
|
|
|
|
})
|
|
return req
|
|
|
|
|
|
# In[7]:
|
|
|
|
|
|
df_candle = pd.read_csv("../data/EURUSD_price_candlestick.csv")
|
|
df_candle.rename(columns={'timestamp': 'date'}, inplace=True)
|
|
df_candle
|
|
|
|
|
|
# In[8]:
|
|
|
|
|
|
o1={
|
|
'name':ind_OCHL,
|
|
'params':{},
|
|
'showMode':'PartOf',
|
|
}
|
|
o2={
|
|
'name':ind_BB,
|
|
'params':{'MeanType':'SMA','window':25,'valueType':'low','kDev':2},
|
|
'showMode':'PartOf',
|
|
}
|
|
jj=indicatorAgrigator().runAll([o1,o2],df_candle[:300],True)
|
|
#jj.createIndFromList([o1,o2])
|
|
#jj.calculateInd(df_candle[:30])
|
|
|
|
|
|
# In[9]:
|
|
|
|
|
|
op={'MeanType':'SMA','window':5,'valueType':'low','kDev':2}
|
|
a=ind_BB(df_candle[:100],op,'PartOf')
|
|
|
|
|
|
# In[10]:
|
|
|
|
|
|
a.getAns()
|
|
|
|
|
|
# In[11]:
|
|
|
|
|
|
b=ind_OCHL(df_candle[:30],{},'Ind')
|
|
b.getAns(df_candle[:100])
|
|
|
|
|
|
# In[12]:
|
|
|
|
|
|
opc={'MeanType':'SMA','window':20,'valueType':'low','kDev':2}
|
|
c=ind_BB(df_candle[:100],opc,'PartOf')
|
|
c.getAns()
|
|
|
|
|
|
# In[13]:
|
|
|
|
|
|
hhh = CoreDraw.agrigateFig([[b,a,c]],True)
|
|
|
|
|
|
# In[14]:
|
|
|
|
|
|
import indicators
|
|
|
|
|
|
# In[15]:
|
|
|
|
|
|
op_1={'MeanType':'SMA','window':5,'valueType':'low','kDev':2}
|
|
test_1=indicators.ind_BB(df_candle[:100],op)
|
|
test_1.getAns()
|
|
|
|
|
|
# In[ ]:
|
|
|
|
|
|
|
|
|