marketTrade/Core/CoreTraidMath.py
2022-03-04 16:21:28 +03:00

119 lines
3.3 KiB
Python

import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
import plotly
#import plotly.plotly as py
import plotly.graph_objs as go
# these two lines allow your code to show up in a notebook
from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
init_notebook_mode()
class CoreMath:
def __init__(self, base_df, params={
'dataType':'ohcl',
'action': None,
'actionOptions':{}
}
):
self.base_df=base_df.reset_index(drop=True)
self.params=params
if self.params['dataType']=='ohcl':
self.col=self.base_df[[self.params['actionOptions']['valueType']]]
elif self.params['dataType']=='series':
self.col=self.base_df
self.ans=self.getAns()
def getAns(self):
ans=None
if self.params['action']=='findExt':
ans = self.getExtremumValue()
if self.params['action']=='findMean':
ans = self.getMeanValue()
return ans
def getExtremumValue(self):
ans=None
'''
actionOptions:
'extremumtype':
'min'
'max'
'valueType':
'open'
'close'
'high'
'low'
'''
if self.params['actionOptions']['extremumtype']=='max':
ans=max(self.col)
if self.params['actionOptions']['extremumtype']=='min':
ans=min(self.col)
return ans
def getMeanValue(self):
'''
actionOptions:
'MeanType':
'MA'
'SMA'
'EMA'
'WMA'
--'SMMA'
'valueType':
'open'
'close'
'high'
'low'
'window'
'span'
'weights'
'''
ans=None
if self.params['actionOptions']['MeanType']=='MA':
ans = self.col.mean()
if self.params['actionOptions']['MeanType']=='SMA':
#ans=np.convolve(self.col, np.ones(self.params['actionOptions']['window']), 'valid') / self.params['actionOptions']['window']
ans=self.col.rolling(window=self.params['actionOptions']['window']).mean()
if self.params['actionOptions']['MeanType']=='EMA':
ans=self.col.ewm(span=elf.params['actionOptions']['span'], adjust=False).mean()
if self.params['actionOptions']['MeanType']=='WMA':
try:
weights=self.params['actionOptions']['weights']
except KeyError:
weights=np.arange(1,self.params['actionOptions']['window']+1)
ans=self.col.rolling(window=self.params['actionOptions']['window']).apply(lambda x: np.sum(weights*x) / weights.sum(), raw=False)
return(ans)