from market_trade.core.decisionManager_v2 import * from market_trade.core.indicators_v2 import * from market_trade.core.signals_v2 import * import market_trade.data.dataloader sigAgrReq = { 'sig_BB':{ 'className':sig_BB, 'params':{'source':'close','target':'close'}, 'indicators':{ 'ind_BB':{ 'className':ind_BB, 'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2.5} } } }, 'sig_BB_2':{ 'className':sig_BB, 'params':{'source':'close','target':'close'}, 'indicators':{ 'ind_BB':{ 'className':ind_BB, 'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2} } } } } test = decsionManager('Pipa', sigAgrReq) import pandas as pd df_candle = pd.read_csv("../../data/EURUSD_price_candlestick.csv") df_candle["date"] = df_candle["timestamp"] sigAgrRetroTemplate = { 'sig_BB':{ 'signalData': None, 'indicatorData' :{'ind_BB': None} }, 'sig_BB_2':{ 'signalData': None, 'indicatorData' :{'ind_BB': None} } } retroAns = test.getRetroTrendAns(sigAgrRetroTemplate,df_candle[5000:6000].reset_index(drop=True),40) test.generateMatrixProbabilityFromDict(retroAns) sigAgrData = { 'sig_BB':{ 'signalData': df_candle[990:1000], 'indicatorData' :{'ind_BB': df_candle[:1000]} }, 'sig_BB_2':{ 'signalData': df_candle[990:1000], 'indicatorData' :{'ind_BB': df_candle[:1000]} } } test.getOnlineAns(sigAgrData, 0.0)