import pandas as pd import datetime import numpy as np import plotly as pl import plotly.graph_objs as go import matplotlib.pyplot as plt import math import scipy import random import statistics import datetime import matplotlib.dates as mdates import matplotlib.pyplot as plt import mplfinance as mpf import plotly #import plotly.plotly as py import plotly.graph_objs as go # these two lines allow your code to show up in a notebook from plotly.offline import init_notebook_mode, iplot from plotly.subplots import make_subplots init_notebook_mode() import CoreTraidMath import plotly.express as px class agrigateFig(): def __init__(self,data=[],needDraw=False ,subplot_titles=None): self.data=data self.ans=self.getAgrPlt() if needDraw: self.subplot_titles=subplot_titles self.fig=coreDraw(self.ans,True,self.subplot_titles) def getAgrPlt(self): count=0 ans=[] for i in self.data: count=count+1 if type(i)==list: for g in i: for j in g.figDict: ans.append(j) ans[-1]['row']=count else: for j in i.figDict: ans.append(j) ans[-1]['row']=count return ans class corePlt(): def __init__(self, params={ 'vtype':'', 'df':pd.DataFrame(), 'row':1, 'col':1, 'name':'' }): self.vtype=params['vtype'] self.df=params['df'] self.row=params['row'] self.col=params['col'] self.name=params['name'] if 'colorType' in params.keys(): self.colorType=params['colorType'] class coreDraw(): def __init__(self, data=[],needShow=False): self.data=self.getPlts(data) self.needShow=needShow self.ans=self.getAns() def getBarColorList(self,l,colorType): if colorType=='diffAbs': ans=['green'] for i in range(1,len(l)): if abs(l[i])>abs(l[i-1]): ans.append('green') else: ans.append('red') elif colorType=='diff': ans=['green'] for i in range(1,len(l)): if (l[i])>(l[i-1]): ans.append('green') else: ans.append('red') elif colorType=='normal': ans=[] for i in range(len(l)): ans.append('gray') return ans def getPlts(self, data): ans=None if type(data)==list: ans=[] for i in data: ans.append(corePlt(i)) else: ans=[corePlt(data)] return ans def getAns(self): ''' data list vtype df row=1 col=1 name ''' ans=None maxRow=1 maxCol=1 for i in self.data: if i.row > maxRow: maxRow =i.row if i.col > maxCol: maxCol =i.col fig = make_subplots( rows=maxRow, cols=maxCol, shared_xaxes=True, vertical_spacing=0.02, shared_yaxes=True, horizontal_spacing=0.02, #column_widths=[] ) fig.update_layout(xaxis_rangeslider_visible=False) fig.update_layout(barmode='relative') for i in self.data: if i.vtype=='Scatter': fig.add_trace(go.Scatter(x=i.df['date'],y=i.df['value'],name=i.name), row=i.row, col=i.col) elif i.vtype=='OCHL': fig.add_trace(go.Candlestick( x=i.df['date'], open=i.df['open'], high=i.df['high'], low=i.df['low'], close=i.df['close'], name=i.name), row=i.row, col=i.col ) elif i.vtype=='Bars': for j in i.df.keys(): if j!='date': try: colorType=i.colorType except: colorType='normal' colors=self.getBarColorList(i.df[j],colorType) fig.add_trace(go.Bar(x=i.df['date'], y=i.df[j],name=j,marker_color=colors)) ans=fig if self.needShow: plotly.offline.iplot(fig) return ans