from market_trade.core.decisionManager_v2 import DecisionManager from market_trade.core.indicators_v2 import ind_BB from market_trade.core.signals_v2 import sig_BB import market_trade.data.dataloader sig_agr_req = { 'sig_BB': { 'className': sig_BB, 'params': {'source': 'close', 'target': 'close'}, 'indicators': { 'ind_BB': { 'className': ind_BB, 'params': {'MeanType': 'SMA', 'window': 30, 'valueType': 'close', 'kDev': 2.5} } } }, 'sig_BB_2': { 'className': sig_BB, 'params': {'source': 'close', 'target': 'close'}, 'indicators': { 'ind_BB': { 'className': ind_BB, 'params': {'MeanType': 'SMA', 'window': 30, 'valueType': 'close', 'kDev': 2} } } } } test = DecisionManager('Pipa', sig_agr_req) import pandas as pd df_candle = pd.read_csv("../../data/EURUSD_price_candlestick.csv") df_candle["date"] = df_candle["timestamp"] sig_agr_retro_template = { 'sig_BB': { 'signalData': None, 'indicatorData': {'ind_BB': None} }, 'sig_BB_2': { 'signalData': None, 'indicatorData': {'ind_BB': None} } } retro_ans = test.get_retro_trend_answer(sig_agr_retro_template, df_candle[5000:6000].reset_index(drop=True), 40) test.generate_matrix_probability_from_dict(retro_ans) sig_agr_data = { 'sig_BB': { 'signalData': df_candle[990:1000], 'indicatorData': {'ind_BB': df_candle[:1000]} }, 'sig_BB_2': { 'signalData': df_candle[990:1000], 'indicatorData': {'ind_BB': df_candle[:1000]} } } test.get_online_answer(sig_agr_data, 0.0)