refactor/code-style-standardization #1

Open
strategy155 wants to merge 6 commits from refactor/code-style-standardization into dev
Showing only changes of commit 159095ce5a - Show all commits

View File

@ -1,138 +0,0 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
class CoreMath:
def __init__(self, base_df, params={
'dataType':'ohcl',
'action': None,
'actionOptions':{}
}
):
self.base_df=base_df.reset_index(drop=True)
self.params=params
if self.params['dataType']=='ohcl':
self.col=self.base_df[self.params['actionOptions']['valueType']]
elif self.params['dataType']=='series':
self.col=self.base_df
self.ans=self.getAns()
def getAns(self):
ans=None
if self.params['action']=='findExt':
ans = self.getExtremumValue()
elif self.params['action']=='findMean':
ans = self.getMeanValue()
elif self.params['action']=='findSTD':
ans=self.getSTD()
return ans
def getExtremumValue(self):
ans=None
'''
actionOptions:
'extremumtype':
'min'
'max'
'valueType':
'open'
'close'
'high'
'low'
'''
if self.params['actionOptions']['extremumtype']=='max':
ans=max(self.col)
if self.params['actionOptions']['extremumtype']=='min':
ans=min(self.col)
return ans
def getMeanValue(self):
'''
actionOptions:
'MeanType':
'MA'
'SMA'
'EMA'
'WMA'
--'SMMA'
'valueType':
'open'
'close'
'high'
'low'
'window'
'span'
'weights'
'''
ans=None
if self.params['actionOptions']['MeanType']=='MA':
ans = self.col.mean()
if self.params['actionOptions']['MeanType']=='SMA':
ans=np.convolve(self.col, np.ones(self.params['actionOptions']['window']), 'valid') / self.params['actionOptions']['window']
#ans=self.col.rolling(window=self.params['actionOptions']['window']).mean().to_list()
if self.params['actionOptions']['MeanType']=='EMA':
ans=self.col.ewm(span=self.params['actionOptions']['span'], adjust=False).mean().to_list()
if self.params['actionOptions']['MeanType']=='WMA':
try:
weights=self.params['actionOptions']['weights']
except KeyError:
weights=np.arange(1,self.params['actionOptions']['window']+1)
ans=self.col.rolling(window=self.params['actionOptions']['window']).apply(lambda x: np.sum(weights*x) / weights.sum(), raw=False).to_list()
return(ans)
def getSTD(self):
'''
actionOptions:
window
'''
ans=None
try:
window=self.params['actionOptions']['window']
ans=np.asarray([])
for i in range(len(self.col)-window+1):
ans=np.append(ans,np.std(self.col[i:i+window], ddof=1))
except:
#window = len(self.col)
ans=np.std(self.col, ddof=1)
return ans