refactor/code-style-standardization #1
@ -1,4 +1,5 @@
|
||||
import os
|
||||
import pickle
|
||||
|
||||
import pandas as pd
|
||||
import datetime
|
||||
@ -6,156 +7,181 @@ import numpy as np
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from market_trade.core.indicators_v2 import *
|
||||
from market_trade.core.signals_v2 import *
|
||||
from market_trade.core.dealManager import *
|
||||
from market_trade.core.trandeVoter import *
|
||||
from market_trade.core.riskManager import *
|
||||
import pickle
|
||||
from market_trade.core.indicators_v2 import ind_BB
|
||||
from market_trade.core.signals_v2 import sig_BB, SignalsAggregator
|
||||
from market_trade.core.dealManager import DealManager
|
||||
from market_trade.core.trandeVoter import TradeVoter
|
||||
from market_trade.core.riskManager import RiskManager
|
||||
|
||||
|
||||
class decsionManager:
|
||||
'''
|
||||
sigAgrReq = {
|
||||
'sig_BB':{
|
||||
'className':sig_BB,
|
||||
'params':{'source':'close','target':'close'},
|
||||
'indicators':{
|
||||
'ind_BB':{
|
||||
'className':ind_BB,
|
||||
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2.5}
|
||||
}
|
||||
class DecisionManager:
|
||||
"""Manages trading decisions based on signals, probability voting, and risk management.
|
||||
|
||||
Coordinates the entire decision-making pipeline:
|
||||
1. Signals from indicators
|
||||
2. Probability-based voting (TradeVoter)
|
||||
3. Risk assessment (RiskManager)
|
||||
4. Deal tracking (DealManager)
|
||||
|
||||
Example configuration:
|
||||
sig_config = {
|
||||
'sig_BB': {
|
||||
'className': sig_BB,
|
||||
'params': {'source': 'close', 'target': 'close'},
|
||||
'indicators': {
|
||||
'ind_BB': {
|
||||
'className': ind_BB,
|
||||
'params': {'MeanType': 'SMA', 'window': 30, 'valueType': 'close', 'kDev': 2.5}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
||||
}
|
||||
},
|
||||
'sig_BB_2':{
|
||||
'className':sig_BB,
|
||||
'params':{'source':'close','target':'close'},
|
||||
'indicators':{
|
||||
'ind_BB':{
|
||||
'className':ind_BB,
|
||||
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
sigAgrData = {
|
||||
'sig_BB':{
|
||||
'signalData': df_candle[990:1000],
|
||||
'indicatorData' :{'ind_BB': df_candle[:1000]}
|
||||
},
|
||||
'sig_BB_2':{
|
||||
'signalData': df_candle[990:1000],
|
||||
'indicatorData' :{'ind_BB': df_candle[:1000]}
|
||||
}
|
||||
}
|
||||
def __init__(self, name: str, sig_dict: dict):
|
||||
"""Initialize DecisionManager with configuration.
|
||||
|
||||
|
||||
sigAgrRetroTemplate = {
|
||||
'sig_BB':{
|
||||
'signalData': None,
|
||||
'indicatorData' :{'ind_BB': None}
|
||||
},
|
||||
'sig_BB_2':{
|
||||
'signalData': None,
|
||||
'indicatorData' :{'ind_BB': None}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
'''
|
||||
|
||||
|
||||
|
||||
|
||||
def __init__(self,name, sigDict: dict):
|
||||
self.RM = riskManager()
|
||||
Args:
|
||||
name: Identifier for this decision manager instance.
|
||||
sig_dict: Dictionary of signal configurations.
|
||||
"""
|
||||
self.RM = RiskManager()
|
||||
self.DM = DealManager()
|
||||
self.TV = trandeVoter(name)
|
||||
self.SA = signalsAgrigator(sigDict)
|
||||
self.sigDict = sigDict
|
||||
|
||||
|
||||
def getOnlineAns(self, signalsAns: dict, price: float) -> dict:
|
||||
probabilityDecsion = self.TV.getDecisionBySignals(self.getSignalsAns(signalsAns))
|
||||
RMD = self.RM.getDecision(probabilityDecision=probabilityDecsion, price=price, deals = self.DM.deals)
|
||||
return RMD
|
||||
|
||||
def getSignalsAns(self, signalsDataDict: dict) -> dict:
|
||||
return self.SA.getAns(signalsDataDict)
|
||||
|
||||
def getRightAns(self,value_1, value_2):
|
||||
|
||||
ans=''
|
||||
|
||||
self.TV = TradeVoter(name)
|
||||
self.SA = SignalsAggregator(sig_dict)
|
||||
self.sig_dict = sig_dict
|
||||
|
||||
def get_online_answer(self, signals_ans: dict, price: float) -> dict:
|
||||
"""Get trading decision for current market conditions.
|
||||
|
||||
Args:
|
||||
signals_ans: Dictionary of signal data.
|
||||
price: Current market price.
|
||||
|
||||
Returns:
|
||||
Risk-adjusted decision dictionary.
|
||||
"""
|
||||
probability_decision = self.TV.get_decision_by_signals(self.get_signals_answer(signals_ans))
|
||||
|
strategy155
commented
inline operation = bad. inline operation = bad.
|
||||
rmd = self.RM.get_decision(
|
||||
probability_decision=probability_decision,
|
||||
price=price,
|
||||
deals=self.DM.deals
|
||||
)
|
||||
return rmd
|
||||
|
||||
def get_signals_answer(self, signals_data_dict: dict) -> dict:
|
||||
"""Get answers from all configured signals.
|
||||
|
||||
Args:
|
||||
signals_data_dict: Dictionary of signal data inputs.
|
||||
|
||||
Returns:
|
||||
Dictionary of signal results.
|
||||
"""
|
||||
return self.SA.get_answer(signals_data_dict)
|
||||
|
strategy155
commented
those functions are quite strange those functions are quite strange
|
||||
|
||||
def get_right_answer(self, value_1: float, value_2: float) -> str:
|
||||
"""Determine correct direction based on value comparison.
|
||||
|
||||
Args:
|
||||
value_1: First value (current).
|
||||
value_2: Second value (next).
|
||||
|
||||
Returns:
|
||||
Direction: 'down' if value decreases, 'up' if increases, 'none' if same.
|
||||
"""
|
||||
|
strategy155
commented
either enum here, or REDO completely. either enum here, or REDO completely.
|
||||
if value_1 > value_2:
|
||||
ans = 'down'
|
||||
elif value_1 < value_2:
|
||||
ans = 'up'
|
||||
else:
|
||||
ans = 'none'
|
||||
|
||||
|
||||
return ans
|
||||
|
||||
def getRetroTrendAns(self, retroTemplateDict: dict, data: pd.DataFrame(), window: int) -> list:
|
||||
|
||||
reqSig={}
|
||||
|
||||
def get_retro_trend_answer(self, retro_template_dict: dict, data: pd.DataFrame, window: int) -> dict:
|
||||
"""Run retrospective analysis on historical data.
|
||||
|
||||
Slides a window through historical data to generate training data
|
||||
for probability matrix generation.
|
||||
|
||||
Args:
|
||||
retro_template_dict: Template defining signal structure.
|
||||
data: Historical market data.
|
||||
window: Size of sliding window.
|
||||
|
||||
Returns:
|
||||
Dictionary with 'signalsAns' and 'rightAns' lists.
|
||||
"""
|
||||
req_sig = {}
|
||||
ans = {
|
||||
'signalsAns':[],
|
||||
'rightAns':[]
|
||||
|
||||
'signalsAns': [],
|
||||
'rightAns': []
|
||||
}
|
||||
target = ''
|
||||
|
||||
|
||||
for k in tqdm(range(data.shape[0]-window-1)):
|
||||
for i in retroTemplateDict.keys():
|
||||
reqSig[i] = {'signalData': data[k:k+window], 'indicatorData':{}}
|
||||
target = self.SA.signals[i].params['target']
|
||||
for j in retroTemplateDict[i]['indicatorData'].keys():
|
||||
reqSig[i]['indicatorData'][j] = data[k:k+window]
|
||||
|
||||
sigAns = self.getSignalsAns(reqSig)
|
||||
rightAns = self.getRightAns(data[target][k], data[target][k+1])
|
||||
|
||||
ans['signalsAns'].append(sigAns)
|
||||
ans['rightAns'].append(rightAns)
|
||||
for k in tqdm(range(data.shape[0] - window - 1)):
|
||||
for i in retro_template_dict.keys():
|
||||
req_sig[i] = {'signalData': data[k:k+window], 'indicatorData': {}}
|
||||
target = self.SA.signals[i].params['target']
|
||||
for j in retro_template_dict[i]['indicatorData'].keys():
|
||||
req_sig[i]['indicatorData'][j] = data[k:k+window]
|
||||
|
||||
|
strategy155
commented
horrible cryptic piece of bloated mess horrible cryptic piece of bloated mess
|
||||
sig_ans = self.get_signals_answer(req_sig)
|
||||
right_ans = self.get_right_answer(data[target][k], data[target][k+1])
|
||||
|
||||
ans['signalsAns'].append(sig_ans)
|
||||
ans['rightAns'].append(right_ans)
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
def generateMatrixProbabilityFromDict(self, dictSignals: dict) -> dict:
|
||||
self.TV.createMatrixAmounts(dictSignals['signalsAns'][0].keys())
|
||||
for i in range(len(dictSignals['signalsAns'])):
|
||||
self.TV.setDecisionBySignals(signalDecisions = dictSignals['signalsAns'][i],
|
||||
trande = dictSignals['rightAns'][i])
|
||||
self.TV.generateMatrixProbability()
|
||||
|
||||
def createDump(self,postfix='') -> str:
|
||||
dataDict = {
|
||||
'RM':self.RM,
|
||||
'DM':self.DM,
|
||||
'TV':self.TV,
|
||||
'SA':self.SA,
|
||||
'sigDict':self.sigDict
|
||||
def generate_matrix_probability_from_dict(self, dict_signals: dict) -> None:
|
||||
"""Generate probability matrices from retrospective signal data.
|
||||
|
||||
Args:
|
||||
dict_signals: Dictionary containing 'signalsAns' and 'rightAns' from retro analysis.
|
||||
"""
|
||||
self.TV.create_matrix_amounts(dict_signals['signalsAns'][0].keys())
|
||||
for i in range(len(dict_signals['signalsAns'])):
|
||||
self.TV.set_decision_by_signals(
|
||||
signal_decisions=dict_signals['signalsAns'][i],
|
||||
trande=dict_signals['rightAns'][i]
|
||||
)
|
||||
self.TV.generate_matrix_probability()
|
||||
|
strategy155
commented
unclear lifecycle, we need to fix it! unclear lifecycle, we need to fix it!
|
||||
|
||||
def create_dump(self, postfix: str = '') -> str:
|
||||
"""Save decision manager state to pickle file.
|
||||
|
||||
Args:
|
||||
postfix: Optional postfix for filename.
|
||||
|
||||
Returns:
|
||||
Absolute path to saved file.
|
||||
"""
|
||||
data_dict = {
|
||||
'RM': self.RM,
|
||||
'DM': self.DM,
|
||||
'TV': self.TV,
|
||||
'SA': self.SA,
|
||||
'sigDict': self.sig_dict
|
||||
}
|
||||
fileName='data_'+postfix+'.pickle'
|
||||
with open(fileName, 'wb') as f:
|
||||
pickle.dump(dataDict, f)
|
||||
|
||||
return os.path.abspath(fileName)
|
||||
|
||||
def loadDump(self,path: str) -> None:
|
||||
|
||||
file_name = 'data_' + postfix + '.pickle'
|
||||
with open(file_name, 'wb') as f:
|
||||
pickle.dump(data_dict, f)
|
||||
|
||||
return os.path.abspath(file_name)
|
||||
|
||||
def load_dump(self, path: str) -> None:
|
||||
"""Load decision manager state from pickle file.
|
||||
|
||||
Args:
|
||||
path: Path to pickle file.
|
||||
"""
|
||||
with open(path, 'rb') as f:
|
||||
dataDict = pickle.load(f)
|
||||
|
||||
self.RM = dataDict['RM']
|
||||
self.DM = dataDict['DM']
|
||||
self.TV = dataDict['TV']
|
||||
self.SA = dataDict['SA']
|
||||
self.sigDict = dataDict['sigDict']
|
||||
data_dict = pickle.load(f)
|
||||
|
||||
self.RM = data_dict['RM']
|
||||
self.DM = data_dict['DM']
|
||||
self.TV = data_dict['TV']
|
||||
self.SA = data_dict['SA']
|
||||
self.sig_dict = data_dict['sigDict']
|
||||
|
||||
@ -3,27 +3,54 @@ import datetime
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
class riskManager:
|
||||
|
||||
def __init__(self,commision=0.04):
|
||||
self.commision = commision
|
||||
pass
|
||||
def getDecision(self,probabilityDecision, price, deals=None) -> dict:
|
||||
|
||||
class RiskManager:
|
||||
"""Manages risk assessment and position sizing for trading decisions.
|
||||
|
||||
Evaluates trading decisions from probability-based signals and applies
|
||||
risk management rules including commission calculations and profit targets.
|
||||
"""
|
||||
|
||||
def __init__(self, commission: float = 0.04):
|
||||
"""Initialize RiskManager with commission rate.
|
||||
|
||||
Args:
|
||||
commission: Commission rate as decimal (default 0.04 = 4%).
|
||||
"""
|
||||
self.commission = commission
|
||||
|
||||
def get_decision(self, probability_decision: dict, price: float, deals: pd.DataFrame = None) -> dict:
|
||||
"""Evaluate trading decision with risk management rules.
|
||||
|
||||
Args:
|
||||
probability_decision: Dictionary containing 'trande' direction from TradeVoter.
|
||||
price: Current market price.
|
||||
deals: DataFrame of active positions (optional).
|
||||
|
||||
Returns:
|
||||
Dictionary with 'decision' ('buy', 'sell', 'none') and additional fields:
|
||||
- For 'buy': includes 'amount' field
|
||||
- For 'sell': includes 'deals' list of position UUIDs to close
|
||||
"""
|
||||
|
strategy155
commented
enums enums enumS! enums enums enumS!
|
||||
ans = {}
|
||||
ans['decision'] = 'none'
|
||||
if probabilityDecision['trande'] == 'up':
|
||||
|
||||
if probability_decision['trande'] == 'up':
|
||||
ans['decision'] = 'buy'
|
||||
ans['amount'] = 1
|
||||
elif probabilityDecision['trande'] == 'none':
|
||||
|
||||
elif probability_decision['trande'] == 'none':
|
||||
ans['decision'] = 'none'
|
||||
elif probabilityDecision['trande'] == 'down':
|
||||
for i in range(deals.shape[0]):
|
||||
ans['decision'] = 'None'
|
||||
ans['deals'] = []
|
||||
row = deals.iloc[i]
|
||||
if row.startPrice < price*pow(1+self.commission,2):
|
||||
ans['decision'] = 'sell'
|
||||
ans['deals'].append(row.name)
|
||||
|
||||
elif probability_decision['trande'] == 'down':
|
||||
if deals is not None:
|
||||
for i in range(deals.shape[0]):
|
||||
ans['decision'] = 'none'
|
||||
ans['deals'] = []
|
||||
row = deals.iloc[i]
|
||||
# Check if position is profitable after commission
|
||||
if row.startPrice < price * pow(1 + self.commission, 2):
|
||||
|
strategy155
commented
too inline. too inline.
|
||||
ans['decision'] = 'sell'
|
||||
ans['deals'].append(row.name)
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
|
||||
@ -3,82 +3,72 @@ import datetime
|
||||
import numpy as np
|
||||
#import random
|
||||
|
||||
class trandeVoter():
|
||||
|
||||
def __init__(self,name):
|
||||
|
||||
self.name = name # просто имя
|
||||
self.trandeValuesList = ['up','none','down'] #словарь трегдов
|
||||
self.matrixAmounts = None # матрица сумм
|
||||
self.keysMatrixAmounts = None #ключи матрицы сумм, техническое поле
|
||||
self.matrixProbability = None # матрица вероятностей
|
||||
|
||||
|
||||
#функция которая создает df с заданным набором колонок и индексов. индексы - уникальные соотношения
|
||||
def createDFbyNames(self, namesIndex, namesColoms,defaultValue=0.0):
|
||||
df = pd.DataFrame(dict.fromkeys(namesColoms, [defaultValue]*pow(3,len(namesIndex))),
|
||||
index=pd.MultiIndex.from_product([self.trandeValuesList]*len(namesIndex), names=namesIndex)
|
||||
#,columns=namesColoms
|
||||
class TradeVoter():
|
||||
|
||||
def __init__(self, name):
|
||||
|
||||
self.name = name # Instance identifier
|
||||
self.trade_values_list = ['up', 'none', 'down'] # Valid trade directions
|
||||
self.matrix_amounts = None # Sum matrix for signal combinations
|
||||
self.keys_matrix_amounts = None # Matrix keys, technical field
|
||||
self.matrix_probability = None # Probability matrix for decision making
|
||||
|
||||
|
||||
# Function to create DataFrame with specified columns and indices. Indices are unique combinations.
|
||||
def create_df_by_names(self, names_index, column_names, default_value=0.0):
|
||||
df = pd.DataFrame(dict.fromkeys(column_names, [default_value]*pow(3, len(names_index))),
|
||||
index=pd.MultiIndex.from_product([self.trade_values_list]*len(names_index), names=names_index)
|
||||
|
strategy155
commented
very cryptic, may be split by multiple stages of creation very cryptic, may be split by multiple stages of creation
|
||||
)
|
||||
return(df)
|
||||
|
||||
#создание матрицы сумм с дефолтным значением
|
||||
def createMatrixAmounts(self,namesIndex: list) -> pd.DataFrame():
|
||||
self.matrixAmounts = self.createDFbyNames(namesIndex,self.trandeValuesList,0)
|
||||
self.keysMatrixAmounts = self.matrixAmounts.to_dict('tight')['index_names']
|
||||
self.createMatrixProbability(namesIndex)
|
||||
return(self.matrixAmounts)
|
||||
|
||||
#создание матрицы вероятностей с дефолтным значением
|
||||
def createMatrixProbability(self,namesIndex: list) -> pd.DataFrame():
|
||||
self.matrixProbability = self.createDFbyNames(namesIndex,self.trandeValuesList)
|
||||
return(self.matrixProbability)
|
||||
|
||||
#установка значений в матрицы сумм. signalDecisions - значения индикаторов key:value; trande - реальное значение
|
||||
def setDecisionBySignals(self,signalDecisions: dict,trande: str) -> None:
|
||||
buff=[]
|
||||
for i in self.keysMatrixAmounts:
|
||||
buff.append(signalDecisions[i])
|
||||
self.matrixAmounts.loc[tuple(buff),trande] += 1
|
||||
|
||||
#заполнение матрицы вероятностей вычисляемыми значениями из матрицы сумм
|
||||
def generateMatrixProbability(self) -> None:
|
||||
for i in range(self.matrixAmounts.shape[0]):
|
||||
print(self.matrixAmounts)
|
||||
rowSum=sum(self.matrixAmounts.iloc[i]) + 1
|
||||
self.matrixProbability.iloc[i]['up'] = self.matrixAmounts.iloc[i]['up'] / rowSum
|
||||
self.matrixProbability.iloc[i]['none'] = self.matrixAmounts.iloc[i]['none'] / rowSum
|
||||
self.matrixProbability.iloc[i]['down'] = self.matrixAmounts.iloc[i]['down'] / rowSum
|
||||
return df
|
||||
|
||||
#получение рещения из матрицы вероятностей по заданным значениям сигналов
|
||||
def getDecisionBySignals(self,signalDecisions: dict) -> dict:
|
||||
# Create sum matrix with default value
|
||||
def create_matrix_amounts(self, names_index: list) -> pd.DataFrame:
|
||||
self.matrix_amounts = self.create_df_by_names(names_index, self.trade_values_list, 0)
|
||||
self.keys_matrix_amounts = self.matrix_amounts.to_dict('tight')['index_names']
|
||||
self.create_matrix_probability(names_index)
|
||||
return self.matrix_amounts
|
||||
|
||||
# Create probability matrix with default value
|
||||
def create_matrix_probability(self, names_index: list) -> pd.DataFrame:
|
||||
self.matrix_probability = self.create_df_by_names(names_index, self.trade_values_list)
|
||||
return self.matrix_probability
|
||||
|
||||
# Set values in sum matrix. signalDecisions - indicator values key:value; trande - actual value
|
||||
def set_decision_by_signals(self, signal_decisions: dict, trande: str) -> None:
|
||||
buff = []
|
||||
for i in self.keys_matrix_amounts:
|
||||
buff.append(signal_decisions[i])
|
||||
self.matrix_amounts.loc[tuple(buff), trande] += 1
|
||||
|
||||
# Fill probability matrix with calculated values from sum matrix
|
||||
def generate_matrix_probability(self) -> None:
|
||||
for i in range(self.matrix_amounts.shape[0]):
|
||||
print(self.matrix_amounts)
|
||||
row_sum = sum(self.matrix_amounts.iloc[i]) + 1
|
||||
self.matrix_probability.iloc[i]['up'] = self.matrix_amounts.iloc[i]['up'] / row_sum
|
||||
self.matrix_probability.iloc[i]['none'] = self.matrix_amounts.iloc[i]['none'] / row_sum
|
||||
self.matrix_probability.iloc[i]['down'] = self.matrix_amounts.iloc[i]['down'] / row_sum
|
||||
|
||||
# Get decision from probability matrix based on signal values
|
||||
def get_decision_by_signals(self, signal_decisions: dict) -> dict:
|
||||
|
strategy155
commented
many problems here, enums, constants, no usage of pandas inline operations, etc. many problems here, enums, constants, no usage of pandas inline operations, etc.
|
||||
ans = {}
|
||||
spliceSearch =self.matrixProbability.xs(tuple(signalDecisions.values()),
|
||||
level=list(signalDecisions.keys())
|
||||
)
|
||||
ans['probability'] = spliceSearch.to_dict('records')[0]
|
||||
ans['trande'] = spliceSearch.iloc[0].idxmax()
|
||||
splice_search = self.matrix_probability.xs(tuple(signal_decisions.values()),
|
||||
level=list(signal_decisions.keys())
|
||||
)
|
||||
ans['probability'] = splice_search.to_dict('records')[0]
|
||||
ans['trande'] = splice_search.iloc[0].idxmax()
|
||||
return ans
|
||||
|
||||
#получение матриц вероятностей и суммы в видей словарей
|
||||
def getMatrixDict(self) -> dict:
|
||||
ans={}
|
||||
ans['amounts'] = self.matrixAmounts.to_dict('tight')
|
||||
ans['probability'] = self.matrixProbability.to_dict('tight')
|
||||
|
||||
# Get probability and sum matrices as dictionaries
|
||||
def get_matrix_dict(self) -> dict:
|
||||
ans = {}
|
||||
ans['amounts'] = self.matrix_amounts.to_dict('tight')
|
||||
ans['probability'] = self.matrix_probability.to_dict('tight')
|
||||
return ans
|
||||
|
||||
#установка матриц вероятностей и суммы в видей словарей
|
||||
def setMatrixDict(self,matrixDict: dict) -> dict:
|
||||
if matrixDict['amounts'] != None:
|
||||
self.matrixAmounts = pd.DataFrame.from_dict(y['amounts'], orient='tight')
|
||||
if matrixDict['probability'] != None:
|
||||
self.matrixProbability = pd.DataFrame.from_dict(y['probability'], orient='tight')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# Set probability and sum matrices from dictionaries
|
||||
def set_matrix_dict(self, matrix_dict: dict) -> dict:
|
||||
if matrix_dict['amounts'] != None:
|
||||
self.matrix_amounts = pd.DataFrame.from_dict(y['amounts'], orient='tight')
|
||||
if matrix_dict['probability'] != None:
|
||||
self.matrix_probability = pd.DataFrame.from_dict(y['probability'], orient='tight')
|
||||
|
strategy155
commented
again, no docs, no nothing. again, no docs, no nothing.
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user
All the config names and fields should be revised, the configs themselves should be typed through pydantic potentially.