fixed some hierarchial stuff
This commit is contained in:
parent
8d8d102a14
commit
fffd4b9e58
@ -25,7 +25,7 @@ from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
init_notebook_mode()
|
||||
|
||||
import CoreTraidMath
|
||||
import market_trade.core.CoreTraidMath
|
||||
import plotly.express as px
|
||||
|
||||
|
||||
|
||||
@ -46,7 +46,7 @@ class Alligator:
|
||||
'valueType':self.options['valueType'],
|
||||
'window':self.options[keyAns]['window']}
|
||||
}
|
||||
ans=CoreTraidMath.CoreMath(self.base_df,op).ans
|
||||
ans=market_trade.core.CoreTraidMath.CoreMath(self.base_df,op).ans
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
@ -64,7 +64,7 @@ class Envelopes:
|
||||
}
|
||||
if dictResp['MeanType']=='SMA':
|
||||
|
||||
y=CoreTraidMath.CoreMath(self.base_df,op).ans
|
||||
y=market_trade.core.CoreTraidMath.CoreMath(self.base_df,op).ans
|
||||
ans['MainEnv']=y[:len(y)-self.options['shift']]
|
||||
ans['PlusEnv']=ans['MainEnv']*(1+self.options['kProc']/100)
|
||||
ans['MinusEnv']=ans['MainEnv']*(1-self.options['kProc']/100)
|
||||
|
||||
@ -23,7 +23,7 @@ import plotly.graph_objs as go
|
||||
# these two lines allow your code to show up in a notebook
|
||||
from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
import CoreDraw
|
||||
import market_trade.core.CoreDraw
|
||||
init_notebook_mode()
|
||||
import market_trade.core.CoreTraidMath
|
||||
import plotly.express as px
|
||||
|
||||
@ -69,7 +69,7 @@ class Stochastic:
|
||||
'action':'findMean',
|
||||
'actionOptions':{'MeanType':'SMA','window':self.options['windowSMA']}
|
||||
}
|
||||
ans=np.asarray(CoreTraidMath.CoreMath(ser,op).ans)
|
||||
ans=np.asarray(market_trade.core.CoreTraidMath.CoreMath(ser,op).ans)
|
||||
return ans
|
||||
#return np.convolve(col, np.ones(self.options['windowSMA']), 'valid') /self.options['windowSMA']
|
||||
|
||||
|
||||
@ -2,9 +2,9 @@ project:: #bibasCopy
|
||||
# Импорт
|
||||
Для начала импортим все что нужно
|
||||
```python
|
||||
from decisionManager_v2 import *
|
||||
from indicators_v2 import *
|
||||
from signals_v2 import *
|
||||
from market_trade.core.decisionManager_v2 import *
|
||||
from market_trade.core.indicators_v2 import *
|
||||
from market_trade.core.signals_v2 import *
|
||||
```
|
||||
|
||||
Подготавливаем данные по которым собирется модель. Модель представляет из себя словарь в следующем формате:
|
||||
@ -174,9 +174,9 @@ test.generateMatrixProbabilityFromDict(retroAns)
|
||||
```
|
||||
## Итоговый код
|
||||
```python
|
||||
from decisionManager_v2 import *
|
||||
from indicators_v2 import *
|
||||
from signals_v2 import *
|
||||
from market_trade.core.decisionManager_v2 import *
|
||||
from market_trade.core.indicators_v2 import *
|
||||
from market_trade.core.signals_v2 import *
|
||||
import pandas as pd
|
||||
|
||||
|
||||
|
||||
@ -6,11 +6,11 @@ import numpy as np
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
from indicators_v2 import *
|
||||
from signals_v2 import *
|
||||
from dealManager import *
|
||||
from trandeVoter import *
|
||||
from riskManager import *
|
||||
from market_trade.core.indicators_v2 import *
|
||||
from market_trade.core.signals_v2 import *
|
||||
from market_trade.core.dealManager import *
|
||||
from market_trade.core.trandeVoter import *
|
||||
from market_trade.core.riskManager import *
|
||||
import pickle
|
||||
|
||||
|
||||
|
||||
@ -2,8 +2,8 @@ import pandas as pd
|
||||
import datetime
|
||||
import numpy as np
|
||||
|
||||
import CoreTraidMath
|
||||
import CoreDraw
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreDraw
|
||||
|
||||
class coreIndicator():
|
||||
def __init__(self,
|
||||
@ -31,7 +31,7 @@ class coreIndicator():
|
||||
self.getFig()
|
||||
return self.ans
|
||||
def getFig(self,row=1):
|
||||
CoreDraw.coreDraw(self.figDict,True)
|
||||
market_trade.core.CoreDraw.market_trade.core.CoreDraw(self.figDict,True)
|
||||
def getCalculate(self):
|
||||
return "Error"
|
||||
def getFigDict(self):
|
||||
@ -79,7 +79,7 @@ class indicatorAgrigator():
|
||||
req[0].append(i)
|
||||
else:
|
||||
req.append([i])
|
||||
CoreDraw.agrigateFig(req,True)
|
||||
market_trade.core.CoreDraw.agrigateFig(req,True)
|
||||
def runAll(self,indList,df,needDraw=False):
|
||||
self.createIndFromList(indList)
|
||||
self.calculateInd(df)
|
||||
@ -99,12 +99,12 @@ class ind_BB(coreIndicator):
|
||||
'window':self.options['window']
|
||||
}
|
||||
}
|
||||
ans['BB']=CoreTraidMath.CoreMath(self.data,opMA).ans
|
||||
ans['BB']=market_trade.core.CoreTraidMath.CoreMath(self.data,opMA).ans
|
||||
opSTD={'dataType':'ohcl',
|
||||
'action':'findSTD',
|
||||
'actionOptions':{'valueType':self.options['valueType'],'window':self.options['window']}
|
||||
}
|
||||
ans['STD']=CoreTraidMath.CoreMath(self.data,opSTD).ans
|
||||
ans['STD']=market_trade.core.CoreTraidMath.CoreMath(self.data,opSTD).ans
|
||||
ans['pSTD']=ans['BB']+ans['STD']*self.options['kDev']
|
||||
ans['mSTD']=ans['BB']-ans['STD']*self.options['kDev']
|
||||
ans['x']=np.array(self.data['date'][self.options['window']-1:].to_list())
|
||||
|
||||
@ -2,7 +2,7 @@ import pandas as pd
|
||||
import datetime
|
||||
import numpy as np
|
||||
|
||||
import CoreTraidMath
|
||||
import market_trade.core.CoreTraidMath
|
||||
|
||||
class coreIndicator():
|
||||
|
||||
@ -75,12 +75,12 @@ class ind_BB(coreIndicator):
|
||||
'window':self.options['window']
|
||||
}
|
||||
}
|
||||
ans['BB']=CoreTraidMath.CoreMath(data,opMA).ans
|
||||
ans['BB']=market_trade.core.CoreTraidMath.CoreMath(data,opMA).ans
|
||||
opSTD={'dataType':'ohcl',
|
||||
'action':'findSTD',
|
||||
'actionOptions':{'valueType':self.options['valueType'],'window':self.options['window']}
|
||||
}
|
||||
ans['STD']=CoreTraidMath.CoreMath(data,opSTD).ans
|
||||
ans['STD']=market_trade.core.CoreTraidMath.CoreMath(data,opSTD).ans
|
||||
ans['pSTD']=ans['BB']+ans['STD']*self.options['kDev']
|
||||
ans['mSTD']=ans['BB']-ans['STD']*self.options['kDev']
|
||||
ans['x']=np.array(data['date'][self.options['window']-1:].to_list())
|
||||
|
||||
@ -2,11 +2,11 @@ import pandas as pd
|
||||
import datetime
|
||||
import numpy as np
|
||||
|
||||
import CoreTraidMath
|
||||
import CoreDraw
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreDraw
|
||||
from tqdm import tqdm
|
||||
|
||||
from indicators import *
|
||||
from market_trade.core.indicators import *
|
||||
|
||||
class coreSignalTrande():
|
||||
def __init__(self,
|
||||
|
||||
@ -2,11 +2,11 @@ import pandas as pd
|
||||
import datetime
|
||||
import numpy as np
|
||||
|
||||
import CoreTraidMath
|
||||
#import CoreDraw
|
||||
import market_trade.core.CoreTraidMath
|
||||
#import market_trade.core.CoreDraw
|
||||
from tqdm import tqdm
|
||||
|
||||
from indicators_v2 import *
|
||||
from market_trade.core.indicators_v2 import *
|
||||
|
||||
|
||||
|
||||
|
||||
@ -22,7 +22,7 @@ class DukaMTInterface:
|
||||
# droppnig old timestamp index
|
||||
self.duka_dataset.reset_index(inplace=True, drop=True)
|
||||
|
||||
|
||||
print(self.duka_dataset)
|
||||
# adding bids
|
||||
self.bid_candlesticks = self.duka_dataset['bid'].copy()
|
||||
self.bid_candlesticks['date'] = self.duka_dataset['date']
|
||||
|
||||
@ -1 +1,50 @@
|
||||
im
|
||||
from market_trade.core.decisionManager_v2 import *
|
||||
from market_trade.core.indicators_v2 import *
|
||||
from market_trade.core.signals_v2 import *
|
||||
import market_trade.data.dataloader
|
||||
|
||||
|
||||
sigAgrReq = {
|
||||
'sig_BB':{
|
||||
'className':sig_BB,
|
||||
'params':{'source':'close','target':'close'},
|
||||
'indicators':{
|
||||
'ind_BB':{
|
||||
'className':ind_BB,
|
||||
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2.5}
|
||||
}
|
||||
}
|
||||
},
|
||||
'sig_BB_2':{
|
||||
'className':sig_BB,
|
||||
'params':{'source':'close','target':'close'},
|
||||
'indicators':{
|
||||
'ind_BB':{
|
||||
'className':ind_BB,
|
||||
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
test = decsionManager('Pipa', sigAgrReq)
|
||||
|
||||
|
||||
import pandas as pd
|
||||
|
||||
df_candle = pd.read_csv("../../data/EURUSD_price_candlestick.csv")
|
||||
df_candle["date"] = df_candle["timestamp"]
|
||||
sigAgrRetroTemplate = {
|
||||
'sig_BB':{
|
||||
'signalData': None,
|
||||
'indicatorData' :{'ind_BB': None}
|
||||
},
|
||||
'sig_BB_2':{
|
||||
'signalData': None,
|
||||
'indicatorData' :{'ind_BB': None}
|
||||
}
|
||||
}
|
||||
|
||||
retroAns = test.getRetroTrendAns(sigAgrRetroTemplate,df_candle[:5000],40)
|
||||
|
||||
print(test.generateMatrixProbabilityFromDict(retroAns))
|
||||
Loading…
x
Reference in New Issue
Block a user