refactor: rename CoreTraidMath.py to CoreTradeMath.py
Fix typo in core math module filename and update all references. Changes: - Renamed market_trade/core/CoreTraidMath.py → CoreTradeMath.py - Updated 28 import references across 14 files: - All Ind_*.py indicator modules - indicators.py, indicators_v2.py - signals.py, signals_v2.py - CoreDraw.py - Updated documentation references in CLAUDE.md This eliminates the "Traid" typo and aligns with proper English spelling. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
parent
fa46ed472f
commit
bbba7bfe89
151
CLAUDE.md
Normal file
151
CLAUDE.md
Normal file
@ -0,0 +1,151 @@
|
||||
# CLAUDE.md
|
||||
|
||||
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
|
||||
|
||||
## Project Overview
|
||||
|
||||
This is a Python-based algorithmic trading system for financial markets that implements technical indicator analysis, signal generation, decision making, and risk management. It integrates with Tinkoff Invest API for market data and trading.
|
||||
|
||||
## Development Setup
|
||||
|
||||
### Environment Setup
|
||||
- Python 3.9-3.12 (managed via Poetry)
|
||||
- Install dependencies: `poetry install`
|
||||
- Activate virtual environment: `poetry shell`
|
||||
- Environment variables are in `.env` (contains Tinkoff API tokens)
|
||||
|
||||
### Docker Development
|
||||
- Build image: `docker build -f dockerfiles/Dockerfile -t market-trade .`
|
||||
- Main Dockerfile uses Poetry 1.7.1 and Python 3.11
|
||||
- Requires SSH mount for private tinkoff-grpc dependency
|
||||
|
||||
### Running Tests
|
||||
- Test files located in `market_trade/tests/`
|
||||
- Run test: `python market_trade/tests/test_decision.py`
|
||||
- Run specific test: `python market_trade/tests/test_dataloader.py`
|
||||
|
||||
### Data Tools
|
||||
Scripts in `tools/` directory for data collection:
|
||||
- `save_currencies_data.py` - Collect currency market data
|
||||
- `save_shares_data.py` - Collect stock market data
|
||||
- `get_shares_stats.py` - Generate trading statistics
|
||||
- Usage: `python tools/<script_name>.py [options]`
|
||||
|
||||
## Architecture
|
||||
|
||||
### Core Trading Pipeline (docs/trading-flow.md)
|
||||
|
||||
The system follows this data flow:
|
||||
1. **SELECT INSTRUMENT** - Choose trading instrument
|
||||
2. **GET_CANDLES(10000)** - Fetch historical candlestick data
|
||||
3. **RETRO TRAINING** - Backtest signals on historical data
|
||||
4. **STREAM PROCESSING**:
|
||||
- Receive real-time market messages
|
||||
- Accumulate data in sliding window
|
||||
- Update window with each new message
|
||||
- Generate trading signals
|
||||
|
||||
### Module Structure
|
||||
|
||||
#### `market_trade/core/` - Core Trading Logic
|
||||
|
||||
**Signal Processing Chain:**
|
||||
1. **Indicators** (`indicators.py`, `indicators_v2.py`) - Technical indicator calculation
|
||||
- Base class: `coreIndicator`
|
||||
- Bollinger Bands: `ind_BB`
|
||||
- All indicator classes (Ind_*.py): ADX, Alligator, DonchianChannel, Envelopes, Gator, Ishimoku, LRI, STD, Stochastic, bollingerBands
|
||||
|
||||
2. **Signals** (`signals.py`, `signals_v2.py`) - Signal generation from indicators
|
||||
- Base class: `coreSignalTrande` with three modes:
|
||||
- `online` - Real-time signal generation
|
||||
- `retro` - Expanding window backtesting
|
||||
- `retroFast` - Sliding window backtesting
|
||||
- Signal implementations: `signal_BB` (Bollinger Bands signal)
|
||||
- Aggregator: `signalAgrigator` manages multiple signal instances
|
||||
|
||||
3. **Decision Manager** (`decisionManager.py`, `decisionManager_v2.py`) - Trading decisions
|
||||
- Class: `decsionManager`
|
||||
- Combines signals from `signalAgrigator`
|
||||
- Uses `trandeVoter` for probability matrix generation
|
||||
- Methods:
|
||||
- `getSignalTest()` - Test signal generation
|
||||
- `generateMatrixProbability()` - Create probability matrices from backtest
|
||||
- `getOnlineAns()` - Real-time decision making
|
||||
|
||||
4. **Trade Voter** (`trandeVoter.py`) - Probability-based decision weighting
|
||||
- Generates probability matrices from historical signal performance
|
||||
- Weights multiple signals to produce final decision
|
||||
|
||||
5. **Risk Manager** (`riskManager.py`) - Position sizing and risk controls
|
||||
- Class: `riskManager`
|
||||
- Combines signal decisions with risk parameters
|
||||
|
||||
6. **Deal Manager** (`dealManager.py`) - Trade execution and management
|
||||
- Class: `DealManager`
|
||||
- Manages active positions and orders
|
||||
|
||||
**Helper Modules:**
|
||||
- `CoreTradeMath.py` - Mathematical operations for indicators (moving averages, STD)
|
||||
- `CoreDraw.py` - Visualization utilities for indicators and signals
|
||||
|
||||
#### `market_trade/data/` - Data Loading
|
||||
|
||||
- `dataloader.py` - Contains `DukaMTInterface` class
|
||||
- Converts Dukascopy format candlestick data to internal format
|
||||
- Separates bid/ask candlesticks from multi-indexed CSV
|
||||
- Handles both file paths and DataFrames
|
||||
|
||||
#### `market_trade/tests/` - Testing
|
||||
|
||||
- Test files demonstrate usage patterns:
|
||||
- `test_decision.py` - Shows complete decision manager workflow with retro training
|
||||
- `test_dataloader.py` - Data loading tests
|
||||
|
||||
### External Dependencies
|
||||
|
||||
- **tinkoff-grpc** - Private GitHub repo for Tinkoff Invest API integration
|
||||
- Located at: `git@github.com:strategy155/tinkoff_grpc.git`
|
||||
- Used in tools for market data collection
|
||||
- **Data Analysis**: pandas, numpy, scipy, matplotlib, plotly, mplfinance
|
||||
- **Web Scraping**: requests-html, beautifulsoup4, selenium
|
||||
- **Development**: JupyterLab (notebooks in `notebooks/`)
|
||||
|
||||
## Key Constants (market_trade/constants.py)
|
||||
|
||||
- `ROOT_PATH` - Project root directory
|
||||
- `CANDLESTICK_DATASETS_PATH` - Path to candlestick data: `data/candlesticks/`
|
||||
- `TEST_CANDLESTICKS_PATH` - Test dataset: `data/EURUSD_price_candlestick.csv`
|
||||
- `TINKOFF_TOKEN_STRING` - Production API token (from .env)
|
||||
- `SANDBOX_TOKEN_STRING` - Sandbox API token (from .env)
|
||||
- `TINKOFF_API_ADDRESS` - API endpoint: 'invest-public-api.tinkoff.ru:443'
|
||||
|
||||
## Data Formats
|
||||
|
||||
### Candlestick Data
|
||||
Expected DataFrame columns:
|
||||
- `date` - Timestamp
|
||||
- `open`, `high`, `low`, `close` - OHLC price data
|
||||
- For bid/ask data: Multi-indexed with ('bid'/'ask', 'open'/'high'/'low'/'close')
|
||||
|
||||
### Signal Configuration Dictionary
|
||||
```python
|
||||
{
|
||||
'signal_name': {
|
||||
'className': signal_class, # e.g., sig_BB
|
||||
'indParams': {...}, # Indicator parameters
|
||||
'signalParams': { # Signal parameters
|
||||
'source': 'close', # Source price column
|
||||
'target': 'close' # Target price column for analysis
|
||||
},
|
||||
'batchSize': 30 # Window size
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Development Notes
|
||||
|
||||
- Code contains Russian comments and variable names (e.g., "агрегатор", "индикаторы")
|
||||
- Version 2 modules (`*_v2.py`) represent newer implementations
|
||||
- The system uses sliding window approach for real-time signal generation
|
||||
- Backtesting generates probability matrices that weight signal reliability
|
||||
- Data symlink: `data/` -> `/var/data0/markettrade_data`
|
||||
0
docs/trading-flow.md
Normal file
0
docs/trading-flow.md
Normal file
@ -25,7 +25,7 @@ from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
init_notebook_mode()
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
import plotly.express as px
|
||||
|
||||
|
||||
|
||||
137
market_trade/core/CoreTradeMath.py
Normal file
137
market_trade/core/CoreTradeMath.py
Normal file
@ -0,0 +1,137 @@
|
||||
|
||||
import pandas as pd
|
||||
import datetime
|
||||
import numpy as np
|
||||
import plotly as pl
|
||||
import plotly.graph_objs as go
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
import scipy
|
||||
import random
|
||||
import statistics
|
||||
|
||||
|
||||
import datetime
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class CoreMath:
|
||||
|
||||
def __init__(self, base_df, params=None):
|
||||
default_params = {
|
||||
'dataType':'ohcl',
|
||||
'action': None,
|
||||
'actionOptions':{}
|
||||
}
|
||||
self.base_df=base_df.reset_index(drop=True)
|
||||
self.params=params if params is not None else default_params
|
||||
if self.params['dataType']=='ohcl':
|
||||
self.col=self.base_df[self.params['actionOptions']['valueType']]
|
||||
elif self.params['dataType']=='series':
|
||||
self.col=self.base_df
|
||||
self.ans=self.getAns()
|
||||
|
||||
|
||||
def getAns(self):
|
||||
ans=None
|
||||
|
||||
if self.params['action']=='findExt':
|
||||
ans = self.getExtremumValue()
|
||||
elif self.params['action']=='findMean':
|
||||
ans = self.getMeanValue()
|
||||
elif self.params['action']=='findSTD':
|
||||
ans=self.getSTD()
|
||||
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
def getExtremumValue(self):
|
||||
ans=None
|
||||
'''
|
||||
actionOptions:
|
||||
'extremumtype':
|
||||
'min'
|
||||
'max'
|
||||
'valueType':
|
||||
'open'
|
||||
'close'
|
||||
'high'
|
||||
'low'
|
||||
'''
|
||||
if self.params['actionOptions']['extremumtype']=='max':
|
||||
ans=max(self.col)
|
||||
|
||||
if self.params['actionOptions']['extremumtype']=='min':
|
||||
ans=min(self.col)
|
||||
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
def getMeanValue(self):
|
||||
'''
|
||||
actionOptions:
|
||||
'MeanType':
|
||||
'MA'
|
||||
'SMA'
|
||||
'EMA'
|
||||
'WMA'
|
||||
--'SMMA'
|
||||
'valueType':
|
||||
'open'
|
||||
'close'
|
||||
'high'
|
||||
'low'
|
||||
'window'
|
||||
'span'
|
||||
'weights'
|
||||
'''
|
||||
ans=None
|
||||
if self.params['actionOptions']['MeanType']=='MA':
|
||||
ans = self.col.mean()
|
||||
if self.params['actionOptions']['MeanType']=='SMA':
|
||||
ans=np.convolve(self.col, np.ones(self.params['actionOptions']['window']), 'valid') / self.params['actionOptions']['window']
|
||||
#ans=self.col.rolling(window=self.params['actionOptions']['window']).mean().to_list()
|
||||
|
||||
if self.params['actionOptions']['MeanType']=='EMA':
|
||||
ans=self.col.ewm(span=self.params['actionOptions']['span'], adjust=False).mean().to_list()
|
||||
if self.params['actionOptions']['MeanType']=='WMA':
|
||||
try:
|
||||
weights=self.params['actionOptions']['weights']
|
||||
except KeyError:
|
||||
weights=np.arange(1,self.params['actionOptions']['window']+1)
|
||||
ans=self.col.rolling(window=self.params['actionOptions']['window']).apply(lambda x: np.sum(weights*x) / weights.sum(), raw=False).to_list()
|
||||
|
||||
|
||||
|
||||
return(ans)
|
||||
|
||||
def getSTD(self):
|
||||
'''
|
||||
actionOptions:
|
||||
window
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
'''
|
||||
|
||||
ans=None
|
||||
|
||||
|
||||
try:
|
||||
window=self.params['actionOptions']['window']
|
||||
ans=np.asarray([])
|
||||
for i in range(len(self.col)-window+1):
|
||||
ans=np.append(ans,np.std(self.col[i:i+window], ddof=1))
|
||||
|
||||
except:
|
||||
#window = len(self.col)
|
||||
ans=np.std(self.col, ddof=1)
|
||||
|
||||
return ans
|
||||
|
||||
@ -25,7 +25,7 @@ from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
import market_trade.core.CoreDraw
|
||||
init_notebook_mode()
|
||||
|
||||
@ -82,7 +82,7 @@ class ADXI:
|
||||
'action':'findMean',
|
||||
'actionOptions':{'MeanType':'EMA','span':10}
|
||||
}
|
||||
ans=np.asarray(CoreTraidMath.CoreMath(ser,op).ans)
|
||||
ans=np.asarray(CoreTradeMath.CoreMath(ser,op).ans)
|
||||
#print(ans)
|
||||
#ans = np.asarray(ser.ewm(span=40,adjust=False).mean().to_list())
|
||||
#print(ans)
|
||||
|
||||
@ -24,7 +24,7 @@ from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
init_notebook_mode()
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
import market_trade.core.CoreDraw
|
||||
|
||||
|
||||
@ -46,7 +46,7 @@ class Alligator:
|
||||
'valueType':self.options['valueType'],
|
||||
'window':self.options[keyAns]['window']}
|
||||
}
|
||||
ans=market_trade.core.CoreTraidMath.CoreMath(self.base_df,op).ans
|
||||
ans=market_trade.core.CoreTradeMath.CoreMath(self.base_df,op).ans
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
@ -24,7 +24,7 @@ from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
init_notebook_mode()
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
import market_trade.core.CoreDraw
|
||||
|
||||
|
||||
@ -62,9 +62,9 @@ class IDC:
|
||||
}
|
||||
|
||||
for i in range(self.options['window'],len(self.base_df)-self.options['shift']+1):
|
||||
ans['MaxExt'].append(CoreTraidMath.CoreMath(self.base_df[i-self.options['window']:i],opMax).ans)
|
||||
ans['MaxExt'].append(CoreTradeMath.CoreMath(self.base_df[i-self.options['window']:i],opMax).ans)
|
||||
ans['x'].append(self.base_df['date'][i-1+self.options['shift']])
|
||||
ans['MinExt'].append(CoreTraidMath.CoreMath(self.base_df[i-self.options['window']:i],opMin).ans)
|
||||
ans['MinExt'].append(CoreTradeMath.CoreMath(self.base_df[i-self.options['window']:i],opMin).ans)
|
||||
return ans
|
||||
|
||||
|
||||
|
||||
@ -24,7 +24,7 @@ from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
init_notebook_mode()
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
import market_trade.core.CoreDraw
|
||||
|
||||
class Envelopes:
|
||||
@ -64,7 +64,7 @@ class Envelopes:
|
||||
}
|
||||
if dictResp['MeanType']=='SMA':
|
||||
|
||||
y=market_trade.core.CoreTraidMath.CoreMath(self.base_df,op).ans
|
||||
y=market_trade.core.CoreTradeMath.CoreMath(self.base_df,op).ans
|
||||
ans['MainEnv']=y[:len(y)-self.options['shift']]
|
||||
ans['PlusEnv']=ans['MainEnv']*(1+self.options['kProc']/100)
|
||||
ans['MinusEnv']=ans['MainEnv']*(1-self.options['kProc']/100)
|
||||
|
||||
@ -24,7 +24,7 @@ from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
init_notebook_mode()
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
import market_trade.core.CoreDraw
|
||||
import market_trade.core.Ind_Alligator
|
||||
|
||||
|
||||
@ -25,7 +25,7 @@ from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
import market_trade.core.CoreDraw
|
||||
init_notebook_mode()
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
import plotly.express as px
|
||||
|
||||
|
||||
|
||||
@ -25,7 +25,7 @@ from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
init_notebook_mode()
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
import market_trade.core.CoreDraw
|
||||
|
||||
|
||||
|
||||
@ -25,7 +25,7 @@ from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
init_notebook_mode()
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
import market_trade.core.CoreDraw
|
||||
|
||||
class ISTD:
|
||||
@ -53,7 +53,7 @@ class ISTD:
|
||||
'actionOptions':{'valueType':self.options['valueType']}
|
||||
}
|
||||
x=self.base_df['date'].to_list()
|
||||
y= CoreTraidMath.CoreMath(self.base_df,op).ans
|
||||
y= CoreTradeMath.CoreMath(self.base_df,op).ans
|
||||
ans={'y':y,'x':x}
|
||||
|
||||
|
||||
|
||||
@ -25,7 +25,7 @@ from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
init_notebook_mode()
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
import market_trade.core.CoreDraw
|
||||
|
||||
class Stochastic:
|
||||
@ -69,7 +69,7 @@ class Stochastic:
|
||||
'action':'findMean',
|
||||
'actionOptions':{'MeanType':'SMA','window':self.options['windowSMA']}
|
||||
}
|
||||
ans=np.asarray(market_trade.core.CoreTraidMath.CoreMath(ser,op).ans)
|
||||
ans=np.asarray(market_trade.core.CoreTradeMath.CoreMath(ser,op).ans)
|
||||
return ans
|
||||
#return np.convolve(col, np.ones(self.options['windowSMA']), 'valid') /self.options['windowSMA']
|
||||
|
||||
|
||||
@ -24,7 +24,7 @@ from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
init_notebook_mode()
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
import market_trade.core.CoreDraw
|
||||
|
||||
|
||||
@ -50,12 +50,12 @@ class BB:
|
||||
'window':self.options['window']
|
||||
}
|
||||
}
|
||||
ans['BB']=market_trade.core.CoreTraidMath.CoreMath(self.base_df,opMA).ans
|
||||
ans['BB']=market_trade.core.CoreTradeMath.CoreMath(self.base_df,opMA).ans
|
||||
opSTD={'dataType':'ohcl',
|
||||
'action':'findSTD',
|
||||
'actionOptions':{'valueType':self.options['valueType'],'window':self.options['window']}
|
||||
}
|
||||
ans['STD']=market_trade.core.CoreTraidMath.CoreMath(self.base_df,opSTD).ans
|
||||
ans['STD']=market_trade.core.CoreTradeMath.CoreMath(self.base_df,opSTD).ans
|
||||
ans['pSTD']=ans['BB']+ans['STD']*self.options['kDev']
|
||||
ans['mSTD']=ans['BB']-ans['STD']*self.options['kDev']
|
||||
ans['x']=np.array(self.base_df['date'][self.options['window']-1:].to_list())
|
||||
|
||||
@ -2,7 +2,7 @@ import pandas as pd
|
||||
import datetime
|
||||
import numpy as np
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
import market_trade.core.CoreDraw
|
||||
|
||||
class coreIndicator():
|
||||
@ -99,12 +99,12 @@ class ind_BB(coreIndicator):
|
||||
'window':self.options['window']
|
||||
}
|
||||
}
|
||||
ans['BB']=market_trade.core.CoreTraidMath.CoreMath(self.data,opMA).ans
|
||||
ans['BB']=market_trade.core.CoreTradeMath.CoreMath(self.data,opMA).ans
|
||||
opSTD={'dataType':'ohcl',
|
||||
'action':'findSTD',
|
||||
'actionOptions':{'valueType':self.options['valueType'],'window':self.options['window']}
|
||||
}
|
||||
ans['STD']=market_trade.core.CoreTraidMath.CoreMath(self.data,opSTD).ans
|
||||
ans['STD']=market_trade.core.CoreTradeMath.CoreMath(self.data,opSTD).ans
|
||||
ans['pSTD']=ans['BB']+ans['STD']*self.options['kDev']
|
||||
ans['mSTD']=ans['BB']-ans['STD']*self.options['kDev']
|
||||
ans['x']=np.array(self.data['date'][self.options['window']-1:].to_list())
|
||||
|
||||
@ -2,88 +2,158 @@ import pandas as pd
|
||||
import datetime
|
||||
import numpy as np
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
|
||||
class coreIndicator():
|
||||
|
||||
def __init__(self,options: dict, dataType: str = None, predictType: str = None, name: str = None):
|
||||
class CoreIndicator():
|
||||
"""Base class for technical indicators.
|
||||
|
||||
This class provides the foundation for implementing various technical
|
||||
indicators used in trading signal generation.
|
||||
"""
|
||||
|
||||
def __init__(self, options: dict, data_type: str = None, predict_type: str = None, name: str = None):
|
||||
"""Initialize CoreIndicator with configuration options.
|
||||
|
||||
Args:
|
||||
options: Dictionary containing indicator-specific parameters.
|
||||
data_type: Type of data to process (e.g., 'ohlc'). Defaults to None.
|
||||
predict_type: Type of prediction to make (e.g., 'trend'). Defaults to None.
|
||||
name: Optional identifier. Defaults to None.
|
||||
"""
|
||||
self.options = options
|
||||
self.dataType = dataType #ochl
|
||||
self.predictType = predictType #trend
|
||||
self.data_type = data_type # ohlc
|
||||
self.predict_type = predict_type # trend
|
||||
|
||||
def get_answer(self, data: pd.DataFrame):
|
||||
"""Get indicator answer from data.
|
||||
|
||||
def getAns(self, data: pd.DataFrame() ):
|
||||
Args:
|
||||
data: DataFrame containing market data.
|
||||
|
||||
Returns:
|
||||
Calculated indicator values or "ERROR" if not implemented.
|
||||
"""
|
||||
return "ERROR"
|
||||
|
||||
class indicatorsAgrigator:
|
||||
"""
|
||||
indicators = {
|
||||
'ind_BB':{
|
||||
'className':ind_BB,
|
||||
'params':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5}
|
||||
}
|
||||
}
|
||||
dataDic={
|
||||
'ind_BB':df_candle[:1000]
|
||||
}
|
||||
|
||||
class IndicatorsAggregator:
|
||||
"""Aggregates and manages multiple indicator instances.
|
||||
|
||||
"""
|
||||
|
||||
def __init__ (self,indDict={}):
|
||||
self.indDict = indDict
|
||||
self.indInst = {}
|
||||
self.ans={}
|
||||
self.createIndicatorsInstance()
|
||||
|
||||
def createIndicatorsInstance(self):
|
||||
for i in self.indDict.keys():
|
||||
self.indInst[i]=self.indDict[i]['className'](self.indDict[i]['params'])
|
||||
|
||||
def getAns(self,dataDict={}):
|
||||
ans={}
|
||||
for i in dataDict.keys():
|
||||
ans[i] = self.indInst[i].getAns(dataDict[i])
|
||||
return ans
|
||||
|
||||
class ind_BB(coreIndicator):
|
||||
"""
|
||||
options
|
||||
MeanType -> SMA
|
||||
window -> int
|
||||
valueType -> str: low, high, open, close
|
||||
kDev -> float
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self,options: dict,name = None):
|
||||
super().__init__(
|
||||
options = options,
|
||||
dataType = 'ochl',
|
||||
predictType = 'trend',
|
||||
name = name
|
||||
)
|
||||
|
||||
def getAns(self, data: pd.DataFrame()):
|
||||
data=data.reset_index(drop=True)
|
||||
ans={}
|
||||
opMA={'dataType':'ohcl',
|
||||
'action':'findMean',
|
||||
'actionOptions':{
|
||||
'MeanType':self.options['MeanType'],
|
||||
'valueType':self.options['valueType'],
|
||||
'window':self.options['window']
|
||||
Example usage:
|
||||
indicators = {
|
||||
'ind_BB': {
|
||||
'className': ind_BB,
|
||||
'params': {'MeanType': 'SMA', 'window': 15, 'valueType': 'close', 'kDev': 2.5}
|
||||
}
|
||||
}
|
||||
ans['BB']=market_trade.core.CoreTraidMath.CoreMath(data,opMA).ans
|
||||
opSTD={'dataType':'ohcl',
|
||||
'action':'findSTD',
|
||||
'actionOptions':{'valueType':self.options['valueType'],'window':self.options['window']}
|
||||
data_dict = {
|
||||
'ind_BB': df_candle[:1000]
|
||||
}
|
||||
ans['STD']=market_trade.core.CoreTraidMath.CoreMath(data,opSTD).ans
|
||||
ans['pSTD']=ans['BB']+ans['STD']*self.options['kDev']
|
||||
ans['mSTD']=ans['BB']-ans['STD']*self.options['kDev']
|
||||
ans['x']=np.array(data['date'][self.options['window']-1:].to_list())
|
||||
self.ans= ans
|
||||
aggregator = IndicatorsAggregator(indicators)
|
||||
results = aggregator.get_answer(data_dict)
|
||||
"""
|
||||
|
||||
def __init__(self, ind_dict=None):
|
||||
"""Initialize aggregator with indicator dictionary.
|
||||
|
||||
Args:
|
||||
ind_dict: Dictionary mapping indicator names to configurations.
|
||||
Defaults to empty dict if not provided.
|
||||
"""
|
||||
self.ind_dict = ind_dict if ind_dict is not None else {}
|
||||
self.ind_instances = {}
|
||||
self.ans = {}
|
||||
self.create_indicators_instance()
|
||||
|
||||
def create_indicators_instance(self):
|
||||
"""Create instances of all configured indicators."""
|
||||
for i in self.ind_dict.keys():
|
||||
self.ind_instances[i] = self.ind_dict[i]['className'](self.ind_dict[i]['params'])
|
||||
|
||||
def get_answer(self, data_dict=None):
|
||||
"""Calculate answers from all indicators.
|
||||
|
||||
Args:
|
||||
data_dict: Dictionary mapping indicator names to their data.
|
||||
Defaults to empty dict.
|
||||
|
||||
Returns:
|
||||
Dictionary of indicator results.
|
||||
"""
|
||||
if data_dict is None:
|
||||
data_dict = {}
|
||||
ans = {}
|
||||
for i in data_dict.keys():
|
||||
ans[i] = self.ind_instances[i].get_answer(data_dict[i])
|
||||
return ans
|
||||
|
||||
|
||||
class ind_BB(CoreIndicator):
|
||||
"""Bollinger Bands indicator implementation.
|
||||
|
||||
Calculates Bollinger Bands using moving average and standard deviation.
|
||||
|
||||
Required options:
|
||||
MeanType: Type of moving average (e.g., 'SMA')
|
||||
window: Period for calculations (int)
|
||||
valueType: Price type to use ('low', 'high', 'open', 'close')
|
||||
kDev: Standard deviation multiplier (float)
|
||||
"""
|
||||
|
||||
def __init__(self, options: dict, name=None):
|
||||
"""Initialize Bollinger Bands indicator.
|
||||
|
||||
Args:
|
||||
options: Configuration parameters dictionary.
|
||||
name: Optional identifier.
|
||||
"""
|
||||
super().__init__(
|
||||
options=options,
|
||||
data_type='ohlc',
|
||||
predict_type='trend',
|
||||
name=name
|
||||
)
|
||||
|
||||
def get_answer(self, data: pd.DataFrame):
|
||||
"""Calculate Bollinger Bands values.
|
||||
|
||||
Args:
|
||||
data: DataFrame with OHLC price data.
|
||||
|
||||
Returns:
|
||||
Dictionary containing:
|
||||
- BB: Middle band (moving average)
|
||||
- STD: Standard deviation
|
||||
- pSTD: Upper band (BB + kDev * STD)
|
||||
- mSTD: Lower band (BB - kDev * STD)
|
||||
- x: Date array
|
||||
"""
|
||||
data = data.reset_index(drop=True)
|
||||
ans = {}
|
||||
|
||||
op_ma = {
|
||||
'dataType': 'ohcl',
|
||||
'action': 'findMean',
|
||||
'actionOptions': {
|
||||
'MeanType': self.options['MeanType'],
|
||||
'valueType': self.options['valueType'],
|
||||
'window': self.options['window']
|
||||
}
|
||||
}
|
||||
ans['BB'] = market_trade.core.CoreTradeMath.CoreMath(data, op_ma).ans
|
||||
|
||||
op_std = {
|
||||
'dataType': 'ohcl',
|
||||
'action': 'findSTD',
|
||||
'actionOptions': {
|
||||
'valueType': self.options['valueType'],
|
||||
'window': self.options['window']
|
||||
}
|
||||
}
|
||||
ans['STD'] = market_trade.core.CoreTradeMath.CoreMath(data, op_std).ans
|
||||
ans['pSTD'] = ans['BB'] + ans['STD'] * self.options['kDev']
|
||||
ans['mSTD'] = ans['BB'] - ans['STD'] * self.options['kDev']
|
||||
ans['x'] = np.array(data['date'][self.options['window']-1:].to_list())
|
||||
self.ans = ans
|
||||
return ans
|
||||
|
||||
@ -2,7 +2,7 @@ import pandas as pd
|
||||
import datetime
|
||||
import numpy as np
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
import market_trade.core.CoreTradeMath
|
||||
import market_trade.core.CoreDraw
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
@ -2,111 +2,172 @@ import pandas as pd
|
||||
import datetime
|
||||
import numpy as np
|
||||
|
||||
import market_trade.core.CoreTraidMath
|
||||
#import market_trade.core.CoreDraw
|
||||
import market_trade.core.CoreTradeMath
|
||||
from tqdm import tqdm
|
||||
|
||||
from market_trade.core.indicators_v2 import *
|
||||
from market_trade.core.indicators_v2 import IndicatorsAggregator, ind_BB
|
||||
|
||||
|
||||
class CoreSignalTrade:
|
||||
"""Base class for trading signals.
|
||||
|
||||
class coreSignalTrande:
|
||||
Provides foundation for generating trading signals based on technical indicators.
|
||||
"""
|
||||
|
||||
def __init__(self, name: str, req: dict, dataType: str):
|
||||
def __init__(self, name: str, req: dict, data_type: str):
|
||||
"""Initialize signal generator.
|
||||
|
||||
Args:
|
||||
name: Signal identifier.
|
||||
req: Configuration dictionary containing params and indicators.
|
||||
data_type: Type of data to process (e.g., 'ohlc').
|
||||
"""
|
||||
self.name = name
|
||||
self.agrigateInds = self.createIndicatorsInstance(req)
|
||||
self.aggregate_indicators = self.create_indicators_instance(req)
|
||||
self.params = req['params']
|
||||
self.dataType = dataType
|
||||
self.data_type = data_type
|
||||
|
||||
def create_indicators_instance(self, req: dict) -> IndicatorsAggregator:
|
||||
"""Create indicators aggregator from configuration.
|
||||
|
||||
Args:
|
||||
req: Request dictionary containing indicators configuration.
|
||||
|
||||
Returns:
|
||||
IndicatorsAggregator instance.
|
||||
"""
|
||||
return IndicatorsAggregator(req['indicators'])
|
||||
|
||||
def get_indicator_answer(self, data_dict: dict) -> dict:
|
||||
"""Get answers from all indicators.
|
||||
|
||||
Args:
|
||||
data_dict: Dictionary mapping indicator names to data.
|
||||
|
||||
Returns:
|
||||
Dictionary of indicator results.
|
||||
"""
|
||||
return self.aggregate_indicators.get_answer(data_dict)
|
||||
|
||||
def get_answer(self, data: pd.DataFrame, ind_data_dict: dict) -> dict:
|
||||
"""Get signal answer from data and indicator results.
|
||||
|
||||
Args:
|
||||
data: Market data DataFrame.
|
||||
ind_data_dict: Dictionary of indicator data.
|
||||
|
||||
Returns:
|
||||
Signal answer (direction).
|
||||
"""
|
||||
return self.get_signal_answer(data, self.get_indicator_answer(ind_data_dict))
|
||||
|
||||
|
||||
def createIndicatorsInstance(self,req: dict) -> dict:
|
||||
return indicatorsAgrigator(req['indicators'])
|
||||
class sig_BB(CoreSignalTrade):
|
||||
"""Bollinger Bands signal generator.
|
||||
|
||||
def getIndAns(self, dataDict: dict) -> dict:
|
||||
return self.agrigateInds.getAns(dataDict)
|
||||
Generates trading signals based on Bollinger Bands indicator:
|
||||
- 'up' when price is below lower band
|
||||
- 'down' when price is above upper band
|
||||
- 'none' when price is within bands
|
||||
|
||||
def getAns(self, data: pd.DataFrame(), indDataDict: dict) -> dict:
|
||||
return self.getSigAns(data, self.getIndAns(indDataDict))
|
||||
|
||||
|
||||
|
||||
class sig_BB(coreSignalTrande):
|
||||
"""
|
||||
ind keys:
|
||||
ind_BB
|
||||
Required indicator keys:
|
||||
ind_BB: Bollinger Bands indicator
|
||||
"""
|
||||
|
||||
def __init__(self, name: str, req:dict):
|
||||
super().__init__(name, req, 'ochl')
|
||||
def __init__(self, name: str, req: dict):
|
||||
"""Initialize Bollinger Bands signal.
|
||||
|
||||
def getSigAns(self, data: pd.DataFrame(), indAnsDict: dict) -> dict:
|
||||
Args:
|
||||
name: Signal identifier.
|
||||
req: Configuration dictionary.
|
||||
"""
|
||||
super().__init__(name, req, 'ohlc')
|
||||
|
||||
lastValue = data[self.params['source']].to_list()[-1]
|
||||
if lastValue>indAnsDict['ind_BB']['pSTD'][-1]:
|
||||
ans='down'
|
||||
elif lastValue<indAnsDict['ind_BB']['mSTD'][-1]:
|
||||
ans='up'
|
||||
def get_signal_answer(self, data: pd.DataFrame, ind_ans_dict: dict) -> str:
|
||||
"""Calculate signal from Bollinger Bands.
|
||||
|
||||
Args:
|
||||
data: Market data DataFrame.
|
||||
ind_ans_dict: Dictionary containing indicator results.
|
||||
|
||||
Returns:
|
||||
Signal direction: 'up', 'down', or 'none'.
|
||||
"""
|
||||
last_value = data[self.params['source']].to_list()[-1]
|
||||
if last_value > ind_ans_dict['ind_BB']['pSTD'][-1]:
|
||||
ans = 'down'
|
||||
elif last_value < ind_ans_dict['ind_BB']['mSTD'][-1]:
|
||||
ans = 'up'
|
||||
else:
|
||||
ans='none'
|
||||
ans = 'none'
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
class signalsAgrigator:
|
||||
class SignalsAggregator:
|
||||
"""Aggregates and manages multiple signal generators.
|
||||
|
||||
"""
|
||||
sigAgrReq = {
|
||||
'sig_BB':{
|
||||
'className':sig_BB,
|
||||
'params':{'source':'close','target':'close'},
|
||||
'indicators':{
|
||||
'ind_BB':{
|
||||
'className':ind_BB,
|
||||
'params':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5}
|
||||
}
|
||||
}
|
||||
},
|
||||
'sig_BB_2':{
|
||||
'className':sig_BB,
|
||||
'params':{'source':'close','target':'close'},
|
||||
'indicators':{
|
||||
'ind_BB':{
|
||||
'className':ind_BB,
|
||||
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2}
|
||||
Example usage:
|
||||
sig_config = {
|
||||
'sig_BB': {
|
||||
'className': sig_BB,
|
||||
'params': {'source': 'close', 'target': 'close'},
|
||||
'indicators': {
|
||||
'ind_BB': {
|
||||
'className': ind_BB,
|
||||
'params': {'MeanType': 'SMA', 'window': 15, 'valueType': 'close', 'kDev': 2.5}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sigAgrData = {
|
||||
'sig_BB':{
|
||||
'signalData': df_candle[990:1000],
|
||||
'indicatorData' :{'ind_BB': df_candle[:1000]}
|
||||
},
|
||||
'sig_BB_2':{
|
||||
'signalData': df_candle[990:1000],
|
||||
'indicatorData' :{'ind_BB': df_candle[:1000]}
|
||||
sig_data = {
|
||||
'sig_BB': {
|
||||
'signalData': df_candle[990:1000],
|
||||
'indicatorData': {'ind_BB': df_candle[:1000]}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
aggregator = SignalsAggregator(sig_config)
|
||||
results = aggregator.get_answer(sig_data)
|
||||
"""
|
||||
|
||||
def __init__ (self,req:dict):
|
||||
self.signals = self.createSignalsInstance(req)
|
||||
def __init__(self, req: dict):
|
||||
"""Initialize signals aggregator.
|
||||
|
||||
def createSignalsInstance(self, siganlsDict: dict) -> dict:
|
||||
Args:
|
||||
req: Dictionary mapping signal names to configurations.
|
||||
"""
|
||||
self.signals = self.create_signals_instance(req)
|
||||
|
||||
def create_signals_instance(self, signals_dict: dict) -> dict:
|
||||
"""Create instances of all configured signals.
|
||||
|
||||
Args:
|
||||
signals_dict: Dictionary of signal configurations.
|
||||
|
||||
Returns:
|
||||
Dictionary of signal instances.
|
||||
"""
|
||||
ans = {}
|
||||
for i in siganlsDict.keys():
|
||||
ans[i]=siganlsDict[i]['className'](name = i, req = siganlsDict[i])
|
||||
for i in signals_dict.keys():
|
||||
ans[i] = signals_dict[i]['className'](name=i, req=signals_dict[i])
|
||||
return ans
|
||||
|
||||
def getAns(self, dataDict: dict) -> dict:
|
||||
def get_answer(self, data_dict: dict) -> dict:
|
||||
"""Calculate answers from all signals.
|
||||
|
||||
Args:
|
||||
data_dict: Dictionary mapping signal names to their data.
|
||||
Each entry should contain 'signalData' and 'indicatorData'.
|
||||
|
||||
Returns:
|
||||
Dictionary of signal results.
|
||||
"""
|
||||
ans = {}
|
||||
for i in dataDict.keys():
|
||||
ans[i] = self.signals[i].getAns(data = dataDict[i]['signalData'],
|
||||
indDataDict = dataDict[i]['indicatorData'])
|
||||
for i in data_dict.keys():
|
||||
ans[i] = self.signals[i].get_answer(
|
||||
data=data_dict[i]['signalData'],
|
||||
ind_data_dict=data_dict[i]['indicatorData']
|
||||
)
|
||||
return ans
|
||||
Loading…
x
Reference in New Issue
Block a user