moved things to a new place !

This commit is contained in:
Mark 2024-03-15 20:15:46 +01:00
parent 5f8cea85ce
commit 8d8d102a14
28 changed files with 3967 additions and 208 deletions

0
docker-compose.yml Normal file
View File

View File

@ -15,7 +15,7 @@ import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import mplfinance as mpf
#import mplfinance as mpf
import plotly
#import plotly.plotly as py
@ -25,7 +25,7 @@ from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
init_notebook_mode()
import market_trade.core.CoreTraidMath
import CoreTraidMath
import plotly.express as px
@ -79,9 +79,10 @@ class corePlt():
class coreDraw():
def __init__(self, data=[],needShow=False):
def __init__(self, data=[],needShow=False,subplot_titles={}):
self.data=self.getPlts(data)
self.needShow=needShow
self.subplot_titles=subplot_titles
self.ans=self.getAns()
@ -156,11 +157,11 @@ class coreDraw():
rows=maxRow,
cols=maxCol,
shared_xaxes=True,
vertical_spacing=0.02,
vertical_spacing=0.1,
shared_yaxes=True,
horizontal_spacing=0.02,
#horizontal_spacing=0.02,
#column_widths=[]
subplot_titles=self.subplot_titles
)
@ -188,7 +189,7 @@ class coreDraw():
except:
colorType='normal'
colors=self.getBarColorList(i.df[j],colorType)
fig.add_trace(go.Bar(x=i.df['date'], y=i.df[j],name=j,marker_color=colors))
fig.add_trace(go.Bar(x=i.df['date'], y=i.df[j],name=j,marker_color=colors),row=i.row, col=i.col)
@ -196,4 +197,4 @@ class coreDraw():
ans=fig
if self.needShow:
plotly.offline.iplot(fig)
return ans
return ans

View File

@ -1,93 +1,102 @@
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import math
import scipy
import random
import statistics
import datetime
class CoreMath:
def __init__(self, base_df, params=None):
"""
Этот класс нужен для того, чтобы проводить операции над датафреймами
:param base_df: pandas.DataFrame , датафрейм, над которым будут проведены математические операции
:param params: словарь, который определяет какие данные пришли в класс, и что с ними нужно делать, и как
"""
if params is None:
params = {
'dataType': 'ohcl',
'action': None,
'actionOptions': {}
}
# нужно переопределить индексы, потому что нам ничего не известно об индексации входного файла
self.base_df = base_df.reset_index(drop=True)
self.params = params
# Эта часть определяет с какой частью данных нужно проводить вычисления
def __init__(self, base_df, params={
'dataType':'ohcl',
'action': None,
'actionOptions':{}
}
):
self.base_df=base_df.reset_index(drop=True)
self.params=params
if self.params['dataType']=='ohcl':
self.col=self.base_df[self.params['actionOptions']['valueType']]
elif self.params['dataType']=='series':
self.col=self.base_df
# собственно производим вычисления
self.ans=self.getAns()
def getAns(self):
"""
Эта функция занимается собственно рутингом вычислений, в зависимости от параметров
:return: ans, неопределенный тип данных, в заивисимости от action
"""
ans=None
# в зависимости от параметра action производятся соответсвующие действия
if self.params['action']=='findExt':
ans = self.getExtremumValue()
elif self.params['action']=='findMean':
ans = self.getMeanValue()
elif self.params['action']=='findSTD':
ans = self.getSTD()
ans=self.getSTD()
return ans
def getExtremumValue(self):
"""
Эта функция возвращает экстремум произвольного типа внутри одного столбца
Тип контролируется разделом внутри словаря параметров `self.params` по ключу `actionOptions`:
'extremumtype': -- тип экстремума
ans=None
'''
actionOptions:
'extremumtype':
'min'
'max'
:return ans, экстремум произвольного типа
"""
ans=None
'valueType':
'open'
'close'
'high'
'low'
'''
if self.params['actionOptions']['extremumtype']=='max':
ans=max(self.col)
if self.params['actionOptions']['extremumtype']=='min':
ans=min(self.col)
return ans
def getMeanValue(self):
"""
Божественный код
Эта функция возвращает среднее значение одного из следующих типов.
Для определения типа используется словарь `self.params`, по ключу `actionOptions`, релевантные ключи выглядят
так:
'''
actionOptions:
'MeanType':
'MA' -- среднее по всему столбцу
'SMA' -- скользящее среднее
'EMA' -- экспоненциальное скользящее среднее
'WMA' -- взвешенное скользящее среднее
'window' -- размер окна
'span' -- >=1 , аналог окна для экспоненциального среднего, чем он больше тем меньше коэффициент сглаживания
'weights' -- numpy.ndarray, список размером в параметр `window`, конкретные веса для каждого элемента
"""
'MA'
'SMA'
'EMA'
'WMA'
--'SMMA'
'valueType':
'open'
'close'
'high'
'low'
'window'
'span'
'weights'
'''
ans=None
if self.params['actionOptions']['MeanType']=='MA':
ans = self.col.mean()
if self.params['actionOptions']['MeanType']=='SMA':
ans=np.convolve(self.col, np.ones(self.params['actionOptions']['window']), 'valid') / self.params['actionOptions']['window']
#ans=self.col.rolling(window=self.params['actionOptions']['window']).mean().to_list()
if self.params['actionOptions']['MeanType']=='EMA':
ans=self.col.ewm(span=self.params['actionOptions']['span'], adjust=False).mean().to_list()
if self.params['actionOptions']['MeanType']=='WMA':
@ -97,8 +106,10 @@ class CoreMath:
weights=np.arange(1,self.params['actionOptions']['window']+1)
ans=self.col.rolling(window=self.params['actionOptions']['window']).apply(lambda x: np.sum(weights*x) / weights.sum(), raw=False).to_list()
return ans
return(ans)
def getSTD(self):
'''
actionOptions:
@ -109,7 +120,7 @@ class CoreMath:
'''
ans=None
@ -117,11 +128,11 @@ class CoreMath:
window=self.params['actionOptions']['window']
ans=np.asarray([])
for i in range(len(self.col)-window+1):
ans=np.append(ans, np.std(self.col[i:i+window], ddof=1))
ans=np.append(ans,np.std(self.col[i:i+window], ddof=1))
except:
#window = len(self.col)
ans=np.std(self.col, ddof=1)
return ans

View File

@ -0,0 +1,49 @@
import pandas as pd
import datetime
import numpy as np
import uuid
class DealManager():
def __init__(self):
#self.commission=0.04
self.columns=['uuid','figi','amount','startPrice']
self.deals = pd.DataFrame(columns=self.columns)
self.deals = self.deals.set_index('uuid')
def findDealByPriceAndFig(self,price,figi):
ans=None
for i in range(self.deals.shape[0]):
if self.deals.iloc[i].startPrice == price and self.deals.iloc[i].figi == figi:
ans = self.deals.iloc[i].name
break
return ans
def openDeal(self,figi,startPrice,amount=1):
desiredDeal=self.findDealByPriceAndFig(startPrice,figi)
if desiredDeal == None:
newDealDict={
'uuid':[str(uuid.uuid4())],
'figi':[figi],
'startPrice':[startPrice],
'amount':[amount]
}
#newDealDict['profit']=[startPrice*pow(1+self.commission,2)]
newDeal=pd.DataFrame.from_dict(newDealDict).set_index('uuid')
self.deals=pd.concat([self.deals, newDeal])
else:
self.deals.at[desiredDeal,'amount'] += amount
def closeDeal(self,uuid,amount):
desiredDeal=self.deals.loc[uuid]
if desiredDeal.amount - amount == 0:
self.deals = self.deals.drop(labels = [uuid],axis = 0)
else:
self.deals.at[uuid,'amount'] -= amount
#self.deals.loc[uuid].amount = desiredDeal.amount - amount

View File

@ -0,0 +1,116 @@
import pandas as pd
import datetime
import numpy as np
import pickle
from signals import *
from dealManager import *
from trandeVoter import *
from riskManager import riskManager
class decsionManager():
def __init__(self,name):
self.name = name
self.RM = riskManager()
self.DM = DealManager()
self.TV = trandeVoter(name)
self.SA = signalAgrigator()
pass
#вытащенный из signalAgrigator метод теста для сигналов
def getSignalTest(self,data: pd.DataFrame(),reqSig: dict, batchSize=30, dataType='candel') -> dict:
self.SA.mode = 'retroFast'
t.SA.createSingnalInstances(
data = data,
dictAgrigSignal = reqSig,
dataType='candel',
batchSize=30
)
ans = t.SA.getAns(data)
return ans
#метод для генерации матрицы вероятностей.
def generateMatrixProbability(self,
data: pd.DataFrame(),
reqSig: dict,
target: str,
batchSize=30,
#dataType='candel'
):
data=data.reset_index(drop=True)
t.SA.createSingnalInstances(
data = data,
dictAgrigSignal = reqSig,
dataType='candel',
batchSize=batchSize
)
self.TV.createMatrixAmounts(reqSig.keys())
for i in range(data.shape[0]-batchSize-1):
sigAns=self.SA.getAns(data[i:i+batchSize])
rightAns=self.getRetroStepAns(data[target][i],data[target][i+1])
self.TV.setDecisionBySignals(self.KostilEbaniy(sigAns),rightAns)
self.TV.generateMatrixProbability()
#без коментариев блять
def KostilEbaniy(self,d):
ans={}
for i in d.keys():
if d[i] == 0:
ans[i] = 'none'
elif d[i] == 1:
ans[i] = 'up'
elif d[i] == -1:
ans[i] = 'down'
return ans
#тож понятная хуита
def getRetroStepAns(self, value1,value2):
if value1 == value2:
ans = 'none'
elif value1 < value2:
ans = 'up'
else:
ans = 'down'
return ans
#метод для онлай получения решения по сигналу
def getSignal(self,data: pd.DataFrame(),reqSig: dict, dataType='candel') -> dict:
data=data.reset_index(drop=True)
self.SA.mode = 'online'
t.SA.createSingnalInstances(
data = data,
dictAgrigSignal = reqSig,
dataType='candel',
batchSize=30
)
ans = t.SA.getAns(data)
return ans
#Создание сигналов. Вызывать перед getOnlineAns
def crateSignals(self,data: pd.DataFrame(),reqSig: dict, dataType='candel'):
data=data.reset_index(drop=True)
self.SA.mode = 'online'
t.SA.createSingnalInstances(
data = data,
dictAgrigSignal = reqSig,
dataType='candel',
batchSize=30
)
def getOnlineAns(self,data: pd.DataFrame(),price):
sigAns = self.SA.getAns(data)
prob = self.TV.getDecisionBySignals(sigAns)
ans = self.RM.getDecision(sigAns,prob,price)
return ans

View File

@ -0,0 +1,161 @@
import os
import pandas as pd
import datetime
import numpy as np
from tqdm import tqdm
from indicators_v2 import *
from signals_v2 import *
from dealManager import *
from trandeVoter import *
from riskManager import *
import pickle
class decsionManager:
'''
sigAgrReq = {
'sig_BB':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2.5}
}
}
},
'sig_BB_2':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2}
}
}
}
}
sigAgrData = {
'sig_BB':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
},
'sig_BB_2':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
}
}
sigAgrRetroTemplate = {
'sig_BB':{
'signalData': None,
'indicatorData' :{'ind_BB': None}
},
'sig_BB_2':{
'signalData': None,
'indicatorData' :{'ind_BB': None}
}
}
'''
def __init__(self,name, sigDict: dict):
self.RM = riskManager()
self.DM = DealManager()
self.TV = trandeVoter(name)
self.SA = signalsAgrigator(sigDict)
self.sigDict = sigDict
def getOnlineAns(self, signalsAns: dict, price: float) -> dict:
probabilityDecsion = self.TV.getDecisionBySignals(self.getSignalsAns(signalsAns))
RMD = self.RM.getDecision(probabilityDecision=probabilityDecsion, price=price, deals = self.DM.deals)
return RMD
def getSignalsAns(self, signalsDataDict: dict) -> dict:
return self.SA.getAns(signalsDataDict)
def getRightAns(self,value_1, value_2):
ans=''
if value_1 > value_2:
ans = 'down'
elif value_1 < value_2:
ans = 'up'
else:
ans = 'none'
return ans
def getRetroTrendAns(self, retroTemplateDict: dict, data: pd.DataFrame(), window: int) -> list:
reqSig={}
ans = {
'signalsAns':[],
'rightAns':[]
}
target = ''
for k in tqdm(range(data.shape[0]-window-1)):
for i in retroTemplateDict.keys():
reqSig[i] = {'signalData': data[k:k+window], 'indicatorData':{}}
target = self.SA.signals[i].params['target']
for j in retroTemplateDict[i]['indicatorData'].keys():
reqSig[i]['indicatorData'][j] = data[k:k+window]
sigAns = self.getSignalsAns(reqSig)
rightAns = self.getRightAns(data[target][k], data[target][k+1])
ans['signalsAns'].append(sigAns)
ans['rightAns'].append(rightAns)
return ans
def generateMatrixProbabilityFromDict(self, dictSignals: dict) -> dict:
self.TV.createMatrixAmounts(dictSignals['signalsAns'][0].keys())
for i in range(len(dictSignals['signalsAns'])):
self.TV.setDecisionBySignals(signalDecisions = dictSignals['signalsAns'][i],
trande = dictSignals['rightAns'][i])
self.TV.generateMatrixProbability()
def createDump(self,postfix='') -> str:
dataDict = {
'RM':self.RM,
'DM':self.DM,
'TV':self.TV,
'SA':self.SA,
'sigDict':self.sigDict
}
fileName='data_'+postfix+'.pickle'
with open(fileName, 'wb') as f:
pickle.dump(dataDict, f)
return os.path.abspath(fileName)
def loadDump(self,path: str) -> None:
with open(path, 'rb') as f:
dataDict = pickle.load(f)
self.RM = dataDict['RM']
self.DM = dataDict['DM']
self.TV = dataDict['TV']
self.SA = dataDict['SA']
self.sigDict = dataDict['sigDict']

View File

@ -2,8 +2,8 @@ import pandas as pd
import datetime
import numpy as np
import market_trade.core.CoreTraidMath as CoreTraidMath
import market_trade.core.CoreDraw as CoreDraw
import CoreTraidMath
import CoreDraw
class coreIndicator():
def __init__(self,

View File

@ -0,0 +1,89 @@
import pandas as pd
import datetime
import numpy as np
import CoreTraidMath
class coreIndicator():
def __init__(self,options: dict, dataType: str = None, predictType: str = None, name: str = None):
self.options = options
self.dataType = dataType #ochl
self.predictType = predictType #trend
def getAns(self, data: pd.DataFrame() ):
return "ERROR"
class indicatorsAgrigator:
"""
indicators = {
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5}
}
}
dataDic={
'ind_BB':df_candle[:1000]
}
"""
def __init__ (self,indDict={}):
self.indDict = indDict
self.indInst = {}
self.ans={}
self.createIndicatorsInstance()
def createIndicatorsInstance(self):
for i in self.indDict.keys():
self.indInst[i]=self.indDict[i]['className'](self.indDict[i]['params'])
def getAns(self,dataDict={}):
ans={}
for i in dataDict.keys():
ans[i] = self.indInst[i].getAns(dataDict[i])
return ans
class ind_BB(coreIndicator):
"""
options
MeanType -> SMA
window -> int
valueType -> str: low, high, open, close
kDev -> float
"""
def __init__(self,options: dict,name = None):
super().__init__(
options = options,
dataType = 'ochl',
predictType = 'trend',
name = name
)
def getAns(self, data: pd.DataFrame()):
data=data.reset_index(drop=True)
ans={}
opMA={'dataType':'ohcl',
'action':'findMean',
'actionOptions':{
'MeanType':self.options['MeanType'],
'valueType':self.options['valueType'],
'window':self.options['window']
}
}
ans['BB']=CoreTraidMath.CoreMath(data,opMA).ans
opSTD={'dataType':'ohcl',
'action':'findSTD',
'actionOptions':{'valueType':self.options['valueType'],'window':self.options['window']}
}
ans['STD']=CoreTraidMath.CoreMath(data,opSTD).ans
ans['pSTD']=ans['BB']+ans['STD']*self.options['kDev']
ans['mSTD']=ans['BB']-ans['STD']*self.options['kDev']
ans['x']=np.array(data['date'][self.options['window']-1:].to_list())
self.ans= ans
return ans

View File

@ -0,0 +1,29 @@
import pandas as pd
import datetime
import numpy as np
import random
class riskManager:
def __init__(self,commision=0.04):
self.commision = commision
pass
def getDecision(self,probabilityDecision, price, deals=None) -> dict:
ans = {}
ans['decision'] = 'none'
if probabilityDecision['trande'] == 'up':
ans['decision'] = 'buy'
ans['amount'] = 1
elif probabilityDecision['trande'] == 'none':
ans['decision'] = 'none'
elif probabilityDecision['trande'] == 'down':
for i in range(deals.shape[0]):
ans['decision'] = 'None'
ans['deals'] = []
row = deals.iloc[i]
if row.startPrice < price*pow(1+self.commission,2):
ans['decision'] = 'sell'
ans['deals'].append(row.name)
return ans

View File

@ -2,12 +2,11 @@ import pandas as pd
import datetime
import numpy as np
import market_trade.core.CoreTraidMath as CoreTraidMath
import market_trade.core.CoreDraw as CoreDraw
import CoreTraidMath
import CoreDraw
from tqdm import tqdm
from market_trade.core.indicators import *
from indicators import *
class coreSignalTrande():
def __init__(self,
@ -17,140 +16,133 @@ class coreSignalTrande():
batchSize=None,
indParams=None,
signalParams=None,
# needFig=False,
# showOnlyIndex=False,
# drawFig=False,
# equalityGap=0
):
self.data = data.reset_index(drop=True)
self.onlineData = data.reset_index(drop=True)
self.dataType = dataType
self.mode = mode
self.ans = None
self.softAnalizList = np.asarray([])
self.hardAnalizList = np.asarray([])
self.analizMetrics = {}
self.indParams = indParams
self.signalParams = signalParams
self.batchSize = batchSize
# self.needFig=needFig
# self.showOnlyIndex=showOnlyIndex
# self.drawFig=drawFig
# self.equalityGap=equalityGap
# Роутер получения ответа
def getAns(self, data):
# ans='Error: unknown Mode!'
ans = None
#needFig=False,
#showOnlyIndex=False,
#drawFig=False,
#equalityGap=0
):
self.data=data.reset_index(drop=True)
self.onlineData=data.reset_index(drop=True)
self.dataType=dataType
self.mode=mode
self.ans=None
self.softAnalizList=np.asarray([])
self.hardAnalizList=np.asarray([])
self.analizMetrics={}
self.indParams=indParams
self.signalParams=signalParams
self.batchSize=batchSize
#self.needFig=needFig
#self.showOnlyIndex=showOnlyIndex
#self.drawFig=drawFig
#self.equalityGap=equalityGap
#Роутер получения ответа
def getAns(self,data):
#ans='Error: unknown Mode!'
ans=None
print("Start processing...")
if self.mode == 'online':
ans = self.getOnlineAns(data.reset_index(drop=True))
ans=self.getOnlineAns(data.reset_index(drop=True))
elif self.mode == 'retro':
ans = self.getRetroAns(data)
ans=self.getRetroAns(data)
elif self.mode == 'retroFast':
ans = self.getRetroFastAns(data)
ans=self.getRetroFastAns(data)
print("Processing DONE!")
return ans
# Ретро режим, где расширяется окно добавлением новых элементов
def getRetroAns(self, data):
ans = np.asarray([])
for i in tqdm(range(self.batchSize, len(data) - 1)):
# self.onlineData=self.data[0:i]
#Ретро режим, где расширяется окно добавлением новых элементов
def getRetroAns(self,data):
ans=np.asarray([])
for i in tqdm(range(self.batchSize,len(data)-1)):
#self.onlineData=self.data[0:i]
window_data = data[0:i]
window_data.reset_index(drop=True)
ans = np.append(ans, (self.getOnlineAns(window_data)))
self.ans = ans
ans=np.append(ans,(self.getOnlineAns(window_data)))
self.ans=ans
self.getAnaliz()
self.getMetrix()
return ans
# Ретро режим, где двигается окно
def getRetroFastAns(self, data):
# print('d - ',data)
ans = np.asarray([])
for i in tqdm(range(len(data) - 1 - self.batchSize)):
# self.onlineData=self.data[i:i+self.batchSize]
window_data = data[i:i + self.batchSize]
# print('win - ',window_data)
#Ретро режим, где двигается окно
def getRetroFastAns(self,data):
#print('d - ',data)
ans=np.asarray([])
for i in tqdm(range(len(data)-1-self.batchSize)):
#self.onlineData=self.data[i:i+self.batchSize]
window_data = data[i:i+self.batchSize]
#print('win - ',window_data)
window_data.reset_index(drop=True)
# print('win - ',window_data)
ans = np.append(ans, (self.getOnlineAns(window_data)))
self.ans = ans
#print('win - ',window_data)
ans=np.append(ans,(self.getOnlineAns(window_data)))
self.ans=ans
self.getAnaliz()
self.getMetrix()
return ans
# Метод, который будет переопределять каждый дочерний класс
#Метод, который будет переопределять каждый дочерний класс
def getOnlineAns(self):
return 'Error'
def getAnaliz(self):
print("Start analiz...")
for i in (range(len(self.ans))):
sourceValue = self.data[self.signalParams['source']][i + self.batchSize]
targetValue = self.data[self.signalParams['target']][i + self.batchSize + 1]
if (targetValue) > sourceValue:
if self.ans[i] == 1:
self.softAnalizList = np.append(self.softAnalizList, 1)
self.hardAnalizList = np.append(self.hardAnalizList, 1)
elif self.ans[i] == -1:
self.softAnalizList = np.append(self.softAnalizList, -1)
self.hardAnalizList = np.append(self.hardAnalizList, -1)
sourceValue=self.data[self.signalParams['source']][i+self.batchSize]
targetValue=self.data[self.signalParams['target']][i+self.batchSize + 1]
if (targetValue)>sourceValue:
if self.ans[i]==1:
self.softAnalizList=np.append(self.softAnalizList,1)
self.hardAnalizList=np.append(self.hardAnalizList,1)
elif self.ans[i]==-1:
self.softAnalizList=np.append(self.softAnalizList,-1)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
else:
self.softAnalizList = np.append(self.softAnalizList, 0)
self.hardAnalizList = np.append(self.hardAnalizList, -1)
elif (targetValue) < sourceValue:
if self.ans[i] == 1:
self.softAnalizList = np.append(self.softAnalizList, -1)
self.hardAnalizList = np.append(self.hardAnalizList, -1)
elif self.ans[i] == -1:
self.softAnalizList = np.append(self.softAnalizList, 1)
self.hardAnalizList = np.append(self.hardAnalizList, 1)
self.softAnalizList=np.append(self.softAnalizList,0)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
elif (targetValue)<sourceValue:
if self.ans[i]==1:
self.softAnalizList=np.append(self.softAnalizList,-1)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
elif self.ans[i]==-1:
self.softAnalizList=np.append(self.softAnalizList,1)
self.hardAnalizList=np.append(self.hardAnalizList,1)
else:
self.softAnalizList = np.append(self.softAnalizList, 0)
self.hardAnalizList = np.append(self.hardAnalizList, -1)
self.softAnalizList=np.append(self.softAnalizList,0)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
else:
if self.ans[i] == 1:
self.softAnalizList = np.append(self.softAnalizList, -1)
self.hardAnalizList = np.append(self.hardAnalizList, -1)
elif self.ans[i] == -1:
self.softAnalizList = np.append(self.softAnalizList, -1)
self.hardAnalizList = np.append(self.hardAnalizList, -1)
if self.ans[i]==1:
self.softAnalizList=np.append(self.softAnalizList,-1)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
elif self.ans[i]==-1:
self.softAnalizList=np.append(self.softAnalizList,-1)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
else:
self.softAnalizList = np.append(self.softAnalizList, 0)
self.hardAnalizList = np.append(self.hardAnalizList, 1)
self.softAnalizList=np.append(self.softAnalizList,0)
self.hardAnalizList=np.append(self.hardAnalizList,1)
print("Analiz DONE!")
return 0
def getMeteixDict(self, d):
def getMeteixDict(self,d):
'''
1 - (сбывшиеся + несбывшиеся) \ (сбывшиеся + несбывшиеся +0)
2 - (сбывшиеся - несбывшиеся) \ (сбывшиеся + несбывшиеся +0)
'''
return {
'1': (d['1'] + d['-1']) / (d['1'] + d['-1'] + d['0']),
'2': (d['1'] - d['-1']) / (d['1'] + d['-1'] + d['0']),
'1':(d['1'] + d['-1']) / (d['1'] + d['-1'] + d['0']),
'2':(d['1'] - d['-1']) / (d['1'] + d['-1'] + d['0']),
}
def getMetrix(self):
softAnalizCount = {'-1': 0, '0': 0, '1': 0}
hardAnalizCount = {'-1': 0, '0': 0, '1': 0}
softAnalizCount = {'-1':0,'0':0,'1':0}
hardAnalizCount = {'-1':0,'0':0,'1':0}
for i in range(len(self.softAnalizList)):
softAnalizCount[str(int(self.softAnalizList[i]))] += 1
hardAnalizCount[str(int(self.hardAnalizList[i]))] += 1
self.analizMetrics = {'softAnaliz': self.getMeteixDict(softAnalizCount),
'hardAnaliz': self.getMeteixDict(hardAnalizCount)
}
softAnalizCount[str(int(self.softAnalizList[i]))]+=1
hardAnalizCount[str(int(self.hardAnalizList[i]))]+=1
self.analizMetrics = {'softAnaliz':self.getMeteixDict(softAnalizCount),
'hardAnaliz':self.getMeteixDict(hardAnalizCount)
}
class signal_BB(coreSignalTrande):
def __init__(self,
data=pd.DataFrame(),
dataType='candel',
@ -158,37 +150,101 @@ class signal_BB(coreSignalTrande):
batchSize=None,
indParams=None,
signalParams=None,
):
):
super().__init__(
data=data,
dataType=dataType,
mode=mode,
batchSize=batchSize,
indParams=indParams,
signalParams=signalParams,
)
data=data,
dataType=dataType,
mode=mode,
batchSize=batchSize,
indParams=indParams,
signalParams=signalParams,
)
if self.indParams == None:
indParams = {'MeanType': 'SMA', 'window': 15, 'valueType': 'low', 'kDev': 2}
indParams={'MeanType':'SMA','window':15,'valueType':'low','kDev':2}
else:
indParams = self.indParams
self.BB = ind_BB(
indParams=self.indParams
self.BB=ind_BB(
data=data,
options=indParams,
)
def getOnlineAns(self, data):
ans = 0
# print(data)
def getOnlineAns(self,data):
ans=0
#print(data)
self.BB.getAns(data)
# print(BB)
lastValue = data[self.signalParams['source']].to_list()[-1]
if lastValue > self.BB.ans['pSTD'][-1]:
ans = -1
elif lastValue < self.BB.ans['mSTD'][-1]:
ans = +1
#print(BB)
lastValue=data[self.signalParams['source']].to_list()[-1]
if lastValue>self.BB.ans['pSTD'][-1]:
ans=-1
elif lastValue<self.BB.ans['mSTD'][-1]:
ans=+1
else:
ans = 0
ans=0
return ans
class signalAgrigator:
"""
dictAgrigSignal
key - name str
value - dict
className - class
indParams - dict
signalParams - dict
batchSize - int
"""
def __init__(self,
data=pd.DataFrame(),
dictAgrigSignal={},
mode='online',
dataType='candel',
batchSize=None
):
self.createSingnalInstances(
data,
dictAgrigSignal,
dataType,
batchSize
)
self.mode=mode
def createSingnalInstances(
self,
data,
dictAgrigSignal,
dataType,
batchSize
):
ans={}
for i in dictAgrigSignal:
ans[i]=dictAgrigSignal[i]['className'](
data=data,
dataType=dataType,
batchSize=batchSize,
indParams=dictAgrigSignal[i]['indParams'],
signalParams=dictAgrigSignal[i]['signalParams'],
mode=self.mode
)
self.signalsInstances = ans
return ans
def getAns(self, data):
ans={}
if self.mode == 'online':
for i in self.signalsInstances:
ans[i]=(self.signalsInstances[i].getAns(data))
elif self.mode == 'retroFast' or self.mode == 'retro':
for i in self.signalsInstances:
self.signalsInstances[i].getAns(data)
ans[i]=self.signalsInstances[i].analizMetrics
return ans

View File

@ -0,0 +1,112 @@
import pandas as pd
import datetime
import numpy as np
import CoreTraidMath
#import CoreDraw
from tqdm import tqdm
from indicators_v2 import *
class coreSignalTrande:
def __init__(self, name: str, req: dict, dataType: str):
self.name = name
self.agrigateInds = self.createIndicatorsInstance(req)
self.params = req['params']
self.dataType = dataType
def createIndicatorsInstance(self,req: dict) -> dict:
return indicatorsAgrigator(req['indicators'])
def getIndAns(self, dataDict: dict) -> dict:
return self.agrigateInds.getAns(dataDict)
def getAns(self, data: pd.DataFrame(), indDataDict: dict) -> dict:
return self.getSigAns(data, self.getIndAns(indDataDict))
class sig_BB(coreSignalTrande):
"""
ind keys:
ind_BB
"""
def __init__(self, name: str, req:dict):
super().__init__(name, req, 'ochl')
def getSigAns(self, data: pd.DataFrame(), indAnsDict: dict) -> dict:
lastValue = data[self.params['source']].to_list()[-1]
if lastValue>indAnsDict['ind_BB']['pSTD'][-1]:
ans='down'
elif lastValue<indAnsDict['ind_BB']['mSTD'][-1]:
ans='up'
else:
ans='none'
return ans
class signalsAgrigator:
"""
sigAgrReq = {
'sig_BB':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5}
}
}
},
'sig_BB_2':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2}
}
}
}
}
sigAgrData = {
'sig_BB':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
},
'sig_BB_2':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
}
}
"""
def __init__ (self,req:dict):
self.signals = self.createSignalsInstance(req)
def createSignalsInstance(self, siganlsDict: dict) -> dict:
ans = {}
for i in siganlsDict.keys():
ans[i]=siganlsDict[i]['className'](name = i, req = siganlsDict[i])
return ans
def getAns(self, dataDict: dict) -> dict:
ans = {}
for i in dataDict.keys():
ans[i] = self.signals[i].getAns(data = dataDict[i]['signalData'],
indDataDict = dataDict[i]['indicatorData'])
return ans

View File

@ -0,0 +1,83 @@
import pandas as pd
import datetime
import numpy as np
#import random
class trandeVoter():
def __init__(self,name):
self.name = name # просто имя
self.trandeValuesList = ['up','none','down'] #словарь трегдов
self.matrixAmounts = None # матрица сумм
self.keysMatrixAmounts = None #ключи матрицы сумм, техническое поле
self.matrixProbability = None # матрица вероятностей
#функция которая создает df с заданным набором колонок и индексов. индексы - уникальные соотношения
def createDFbyNames(self, namesIndex, namesColoms,defaultValue=0.0):
df = pd.DataFrame(dict.fromkeys(namesColoms, [defaultValue]*pow(3,len(namesIndex))),
index=pd.MultiIndex.from_product([self.trandeValuesList]*len(namesIndex), names=namesIndex)
#,columns=namesColoms
)
return(df)
#создание матрицы сумм с дефолтным значением
def createMatrixAmounts(self,namesIndex: list) -> pd.DataFrame():
self.matrixAmounts = self.createDFbyNames(namesIndex,self.trandeValuesList,0)
self.keysMatrixAmounts = self.matrixAmounts.to_dict('tight')['index_names']
self.createMatrixProbability(namesIndex)
return(self.matrixAmounts)
#создание матрицы вероятностей с дефолтным значением
def createMatrixProbability(self,namesIndex: list) -> pd.DataFrame():
self.matrixProbability = self.createDFbyNames(namesIndex,self.trandeValuesList)
return(self.matrixProbability)
#установка значений в матрицы сумм. signalDecisions - значения индикаторов key:value; trande - реальное значение
def setDecisionBySignals(self,signalDecisions: dict,trande: str) -> None:
buff=[]
for i in self.keysMatrixAmounts:
buff.append(signalDecisions[i])
self.matrixAmounts.loc[tuple(buff),trande] += 1
#заполнение матрицы вероятностей вычисляемыми значениями из матрицы сумм
def generateMatrixProbability(self) -> None:
for i in range(self.matrixAmounts.shape[0]):
rowSum=sum(self.matrixAmounts.iloc[i])
self.matrixProbability.iloc[i]['up'] = (self.matrixAmounts.iloc[i]['up'] / rowSum)
self.matrixProbability.iloc[i]['none'] = self.matrixAmounts.iloc[i]['none'] / rowSum
self.matrixProbability.iloc[i]['down'] = self.matrixAmounts.iloc[i]['down'] / rowSum
#получение рещения из матрицы вероятностей по заданным значениям сигналов
def getDecisionBySignals(self,signalDecisions: dict) -> dict:
ans = {}
spliceSearch =self.matrixProbability.xs(tuple(signalDecisions.values()),
level=list(signalDecisions.keys())
)
ans['probability'] = spliceSearch.to_dict('records')[0]
ans['trande'] = spliceSearch.iloc[0].idxmax()
return ans
#получение матриц вероятностей и суммы в видей словарей
def getMatrixDict(self) -> dict:
ans={}
ans['amounts'] = self.matrixAmounts.to_dict('tight')
ans['probability'] = self.matrixProbability.to_dict('tight')
return ans
#установка матриц вероятностей и суммы в видей словарей
def setMatrixDict(self,matrixDict: dict) -> dict:
if matrixDict['amounts'] != None:
self.matrixAmounts = pd.DataFrame.from_dict(y['amounts'], orient='tight')
if matrixDict['probability'] != None:
self.matrixProbability = pd.DataFrame.from_dict(y['probability'], orient='tight')

View File

@ -4,7 +4,7 @@ import pandas as pd
if __name__ == '__main__':
df_candle = pd.read_csv(market_trade.src.constants.TEST_CANDLESTICKS_PATH)
df_candle = pd.read_csv(market_trade.constants.TEST_CANDLESTICKS_PATH)
df_candle.rename(columns={'timestamp': 'date'}, inplace=True)
ind_params = {'MeanType': 'SMA', 'window': 15, 'valueType': 'close', 'kDev': 2.5}
signalParams = {'source': 'close', 'target': 'close'}

View File

@ -3,11 +3,11 @@ import market_trade.constants
def test_dataloader(data_path):
duka_interface = (market_trade.src.dataloader.DukaMTInterface(data_path))
duka_interface = (market_trade.data.dataloader.DukaMTInterface(data_path))
print(duka_interface.ask_candlesticks)
if __name__ == '__main__':
candlesticks_filepaths = [filepath for filepath in market_trade.src.constants.CANDLESTICK_DATASETS_PATH.iterdir()]
candlesticks_filepaths = [filepath for filepath in market_trade.constants.CANDLESTICK_DATASETS_PATH.iterdir()]
candlesticks_filepath = candlesticks_filepaths[0]
test_dataloader(candlesticks_filepath)

View File

@ -0,0 +1 @@
im

View File

@ -0,0 +1,267 @@
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import pandas as pd
import datetime
import numpy as np
#import plotly as pl
#import plotly.graph_objs as go
#from plotly.offline import init_notebook_mode, iplot
#from plotly.subplots import make_subplots
#init_notebook_mode()
import CoreTraidMath
import CoreDraw
# In[3]:
class coreIndicator():
def __init__(self,
data=pd.DataFrame(),
options={},
showMode='None',
):
'''
showMode = None/Ind/PartOf
'''
self.data=data
self.showMode=showMode
self.options=options
self.overlayInd=None #True/False
self.ans=None
self.figDict=None
def getAns(self,data=None):
if type(data)!=type(None):
self.data=data
self.ans=self.getCalculate()
if self.showMode=='Ind' or self.showMode=='PartOf':
self.figDict=self.getFigDict()
if self.showMode=='Ind':
self.getFig()
return self.ans
def getFig(self,row=1):
CoreDraw.coreDraw(self.figDict,True)
def getCalculate(self):
return "Error"
def getFigDict(self):
return "Error"
class indicatorAgrigator():
'''
Тема чисто для отладки
jj=indicatorAgrigator().runAll([o1,o2],df_candle[:30])
#jj.createIndFromList([o1,o2])
#jj.calculateInd(df_candle[:30])
'''
def __init__(self):
self.indList=None
self.data=None
def createInd(self,classDict):
return classDict['name'](
options=classDict['params'],
showMode=classDict['showMode']
)
def createIndFromList(self,indList):
self.indList=indList
ans=[]
for i in self.indList:
ans.append(self.createInd(i))
self.indList=ans
return ans
def calculateInd(self,data):
self.data=data
for i in self.indList:
#i.getAns(data)
i.data=self.data
i.ans=i.getCalculate()
i.figDict=i.getFigDict()
#i.getFig()
def agrigateFig(self):
req=[[]]
for i in self.indList:
if i.overlayInd==True:
req[0].append(i)
else:
req.append([i])
CoreDraw.agrigateFig(req,True)
def runAll(self,indList,df,needDraw=False):
self.createIndFromList(indList)
self.calculateInd(df)
if needDraw:
self.agrigateFig()
# In[4]:
class ind_BB(coreIndicator):
def getCalculate(self):
self.overlayInd=True
ans={}
opMA={'dataType':'ohcl',
'action':'findMean',
'actionOptions':{
'MeanType':self.options['MeanType'],
'valueType':self.options['valueType'],
'window':self.options['window']
}
}
ans['BB']=CoreTraidMath.CoreMath(self.data,opMA).ans
opSTD={'dataType':'ohcl',
'action':'findSTD',
'actionOptions':{'valueType':self.options['valueType'],'window':self.options['window']}
}
ans['STD']=CoreTraidMath.CoreMath(self.data,opSTD).ans
ans['pSTD']=ans['BB']+ans['STD']*self.options['kDev']
ans['mSTD']=ans['BB']-ans['STD']*self.options['kDev']
ans['x']=np.array(self.data['date'][self.options['window']-1:].to_list())
return ans
def getFigDict(self,row=1):
req=[]
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['BB'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'BB'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['pSTD'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'pSTD'
})
req.append({
'vtype':'Scatter',
'df':pd.DataFrame(
{'value':self.ans['mSTD'],'date':self.ans['x']}) ,
'row':row,
'col':1,
'name':'mSTD'
})
return req
# In[5]:
class ind_OCHL(coreIndicator):
def getCalculate(self):
self.overlayInd=True
def getFigDict(self,row=1):
req=[]
req.append({
'vtype':'OCHL',
'df':self.data,
'row':1,
'col':1,
'name':'OHCL'
})
return req
# In[7]:
df_candle = pd.read_csv("../data/EURUSD_price_candlestick.csv")
df_candle.rename(columns={'timestamp': 'date'}, inplace=True)
df_candle
# In[8]:
o1={
'name':ind_OCHL,
'params':{},
'showMode':'PartOf',
}
o2={
'name':ind_BB,
'params':{'MeanType':'SMA','window':25,'valueType':'low','kDev':2},
'showMode':'PartOf',
}
jj=indicatorAgrigator().runAll([o1,o2],df_candle[:300],True)
#jj.createIndFromList([o1,o2])
#jj.calculateInd(df_candle[:30])
# In[9]:
op={'MeanType':'SMA','window':5,'valueType':'low','kDev':2}
a=ind_BB(df_candle[:100],op,'PartOf')
# In[10]:
a.getAns()
# In[11]:
b=ind_OCHL(df_candle[:30],{},'Ind')
b.getAns(df_candle[:100])
# In[12]:
opc={'MeanType':'SMA','window':20,'valueType':'low','kDev':2}
c=ind_BB(df_candle[:100],opc,'PartOf')
c.getAns()
# In[13]:
hhh = CoreDraw.agrigateFig([[b,a,c]],True)
# In[14]:
import indicators
# In[15]:
op_1={'MeanType':'SMA','window':5,'valueType':'low','kDev':2}
test_1=indicators.ind_BB(df_candle[:100],op)
test_1.getAns()
# In[ ]:

View File

@ -0,0 +1,45 @@
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import datetime
import numpy as np
import random
# In[2]:
class riskManager:
def __init__(self,commision=0.04):
self.commision = commision
pass
def getDecision(self,signalDecision,probabilityDecision, price, deals=None) -> dict:
ans = {}
if probabilityDecision['trande'] == 'up':
ans['decision'] = 'buy'
ans['amount'] = 1
elif probabilityDecision['trande'] == 'none':
ans['decision'] = 'none'
elif probabilityDecision['trande'] == 'down':
for i in deals.shape[0]:
ans['decision'] = 'None'
ans['deals'] = []
row = deals.iloc[i]
if row.startPrice < price*pow(1+self.commission,2):
ans['decision'] = 'sell'
ans['deals'].append(row.name)
return ans
# In[ ]:

View File

@ -0,0 +1,390 @@
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import datetime
import numpy as np
import CoreTraidMath
import CoreDraw
from tqdm import tqdm
from indicators import *
# In[2]:
df_candle = pd.read_csv("../data/EURUSD_price_candlestick.csv")
df_candle.rename(columns={'timestamp': 'date'}, inplace=True)
df_candle
# In[3]:
class coreSignalTrande():
def __init__(self,
data=pd.DataFrame(),
dataType='candel',
mode='online',
batchSize=None,
indParams=None,
signalParams=None,
#needFig=False,
#showOnlyIndex=False,
#drawFig=False,
#equalityGap=0
):
self.data=data.reset_index(drop=True)
self.onlineData=data.reset_index(drop=True)
self.dataType=dataType
self.mode=mode
self.ans=None
self.softAnalizList=np.asarray([])
self.hardAnalizList=np.asarray([])
self.analizMetrics={}
self.indParams=indParams
self.signalParams=signalParams
self.batchSize=batchSize
#self.needFig=needFig
#self.showOnlyIndex=showOnlyIndex
#self.drawFig=drawFig
#self.equalityGap=equalityGap
#Роутер получения ответа
def getAns(self,data):
#ans='Error: unknown Mode!'
ans=None
print("Start processing...")
if self.mode == 'online':
ans=self.getOnlineAns(data.reset_index(drop=True))
elif self.mode == 'retro':
ans=self.getRetroAns(data)
elif self.mode == 'retroFast':
ans=self.getRetroFastAns(data)
print("Processing DONE!")
return ans
#Ретро режим, где расширяется окно добавлением новых элементов
def getRetroAns(self,data):
ans=np.asarray([])
for i in tqdm(range(self.batchSize,len(data)-1)):
#self.onlineData=self.data[0:i]
window_data = data[0:i]
window_data.reset_index(drop=True)
ans=np.append(ans,(self.getOnlineAns(window_data)))
self.ans=ans
self.getAnaliz()
self.getMetrix()
return ans
#Ретро режим, где двигается окно
def getRetroFastAns(self,data):
#print('d - ',data)
ans=np.asarray([])
for i in tqdm(range(len(data)-1-self.batchSize)):
#self.onlineData=self.data[i:i+self.batchSize]
window_data = data[i:i+self.batchSize]
#print('win - ',window_data)
window_data.reset_index(drop=True)
#print('win - ',window_data)
ans=np.append(ans,(self.getOnlineAns(window_data)))
self.ans=ans
self.getAnaliz()
self.getMetrix()
return ans
#Метод, который будет переопределять каждый дочерний класс
def getOnlineAns(self):
return 'Error'
def getAnaliz(self):
print("Start analiz...")
for i in (range(len(self.ans))):
sourceValue=self.data[self.signalParams['source']][i+self.batchSize]
targetValue=self.data[self.signalParams['target']][i+self.batchSize + 1]
if (targetValue)>sourceValue:
if self.ans[i]==1:
self.softAnalizList=np.append(self.softAnalizList,1)
self.hardAnalizList=np.append(self.hardAnalizList,1)
elif self.ans[i]==-1:
self.softAnalizList=np.append(self.softAnalizList,-1)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
else:
self.softAnalizList=np.append(self.softAnalizList,0)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
elif (targetValue)<sourceValue:
if self.ans[i]==1:
self.softAnalizList=np.append(self.softAnalizList,-1)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
elif self.ans[i]==-1:
self.softAnalizList=np.append(self.softAnalizList,1)
self.hardAnalizList=np.append(self.hardAnalizList,1)
else:
self.softAnalizList=np.append(self.softAnalizList,0)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
else:
if self.ans[i]==1:
self.softAnalizList=np.append(self.softAnalizList,-1)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
elif self.ans[i]==-1:
self.softAnalizList=np.append(self.softAnalizList,-1)
self.hardAnalizList=np.append(self.hardAnalizList,-1)
else:
self.softAnalizList=np.append(self.softAnalizList,0)
self.hardAnalizList=np.append(self.hardAnalizList,1)
print("Analiz DONE!")
return 0
def getMeteixDict(self,d):
'''
1 - (сбывшиеся + несбывшиеся) \ (сбывшиеся + несбывшиеся +0)
2 - (сбывшиеся - несбывшиеся) \ (сбывшиеся + несбывшиеся +0)
'''
return {
'1':(d['1'] + d['-1']) / (d['1'] + d['-1'] + d['0']),
'2':(d['1'] - d['-1']) / (d['1'] + d['-1'] + d['0']),
}
def getMetrix(self):
softAnalizCount = {'-1':0,'0':0,'1':0}
hardAnalizCount = {'-1':0,'0':0,'1':0}
for i in range(len(self.softAnalizList)):
softAnalizCount[str(int(self.softAnalizList[i]))]+=1
hardAnalizCount[str(int(self.hardAnalizList[i]))]+=1
self.analizMetrics = {'softAnaliz':self.getMeteixDict(softAnalizCount),
'hardAnaliz':self.getMeteixDict(hardAnalizCount)
}
# In[4]:
class signal_BB(coreSignalTrande):
def __init__(self,
data=pd.DataFrame(),
dataType='candel',
mode='online',
batchSize=None,
indParams=None,
signalParams=None,
):
super().__init__(
data=data,
dataType=dataType,
mode=mode,
batchSize=batchSize,
indParams=indParams,
signalParams=signalParams,
)
if self.indParams == None:
indParams={'MeanType':'SMA','window':15,'valueType':'low','kDev':2}
else:
indParams=self.indParams
self.BB=ind_BB(
data=data,
options=indParams,
)
def getOnlineAns(self,data):
ans=0
#print(data)
self.BB.getAns(data)
#print(BB)
lastValue=data[signalParams['source']].to_list()[-1]
if lastValue>self.BB.ans['pSTD'][-1]:
ans=-1
elif lastValue<self.BB.ans['mSTD'][-1]:
ans=+1
else:
ans=0
return ans
# In[5]:
ind_params={'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5}
signalParams={'source':'close','target':'close'}
b=signal_BB(data=df_candle[:99999],
mode='retroFast',
indParams=ind_params,
signalParams=signalParams,
batchSize=15
)
# In[6]:
a=b.getAns(df_candle[:99900])
# In[7]:
b.analizMetrics
# In[ ]:
# In[ ]:
# In[ ]:
# In[8]:
from signals import *
# In[9]:
class signalAgrigator:
"""
dictAgrigSignal
key - name str
value - dict
className - class
indParams - dict
signalParams - dict
batchSize - int
"""
def __init__(self,
data=pd.DataFrame(),
dictAgrigSignal={},
mode='online',
dataType='candel',
batchSize=None
):
self.createSingnalInstances(
data,
dictAgrigSignal,
dataType,
batchSize
)
self.mode=mode
def createSingnalInstances(
self,
data,
dictAgrigSignal,
dataType,
batchSize
):
ans={}
for i in dictAgrigSignal:
ans[i]=dictAgrigSignal[i]['className'](
data=data,
dataType=dataType,
batchSize=batchSize,
indParams=dictAgrigSignal[i]['indParams'],
signalParams=dictAgrigSignal[i]['signalParams'],
mode=self.mode
)
self.signalsInstances = ans
return ans
def getAns(self, data):
ans={}
if self.mode == 'online':
for i in self.signalsInstances:
ans[i]=(self.signalsInstances[i].getAns(data))
elif self.mode == 'retroFast' or self.mode == 'retro':
for i in self.signalsInstances:
self.signalsInstances[i].getAns(data)
ans[i]=self.signalsInstances[i].analizMetrics
return ans
# In[10]:
reqSig={
'BB1':{
'className':signal_BB,
'indParams':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5},
'signalParams':{'source':'close','target':'close'},
'batchSize':15
},
'BB2':{
'className':signal_BB,
'indParams':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5},
'signalParams':{'source':'close','target':'close'},
'batchSize':20
}
}
# In[11]:
reqSig.values()
# In[12]:
testh=signalAgrigator(df_candle[:99999],reqSig,'online','ohcl',30)
# In[13]:
testh.signalsInstances['BB1'].__dict__
# In[ ]:
testh.getAns(df_candle[:100])
# In[ ]:
testh.signalsInstances['BB1'].__dict__
# In[ ]:
# In[ ]:

View File

@ -0,0 +1,249 @@
#!/usr/bin/env python
# coding: utf-8
# In[2]:
import pandas as pd
import datetime
import numpy as np
import CoreTraidMath
import CoreDraw
from tqdm import tqdm
from indicators_v2 import *
# In[3]:
df_candle = pd.read_csv(r"../data/EURUSD_price_candlestick.csv")
df_candle.rename(columns={'timestamp': 'date'}, inplace=True)
df_candle
# In[4]:
class coreSignalTrande:
def __init__(self, name: str, req: dict, dataType: str):
self.name = name
self.agrigateInds = self.createIndicatorsInstance(req)
self.params = req['params']
self.dataType = dataType
def createIndicatorsInstance(self,req: dict) -> dict:
return indicatorsAgrigator(req['indicators'])
def getIndAns(self, dataDict: dict) -> dict:
return self.agrigateInds.getAns(dataDict)
def getAns(self, data: pd.DataFrame(), indDataDict: dict) -> dict:
return self.getSigAns(data, self.getIndAns(indDataDict))
class sig_BB(coreSignalTrande):
"""
ind keys:
ind_BB
"""
def __init__(self, name: str, req:dict):
super().__init__(name, req, 'ochl')
def getSigAns(self, data: pd.DataFrame(), indAnsDict: dict) -> dict:
lastValue = data[self.params['source']].to_list()[-1]
if lastValue>indAnsDict['ind_BB']['pSTD'][-1]:
ans='down'
elif lastValue<indAnsDict['ind_BB']['mSTD'][-1]:
ans='up'
else:
ans='none'
return ans
# In[5]:
class signalsAgrigator:
def __init__ (self,req:dict):
self.signals = self.createSignalsInstance(req)
def createSignalsInstance(self, siganlsDict: dict) -> dict:
ans = {}
for i in siganlsDict.keys():
ans[i]=siganlsDict[i]['className'](name = i, req = siganlsDict[i])
return ans
def getAns(self, dataDict: dict) -> dict:
ans = {}
for i in dataDict.keys():
ans[i] = self.signals[i].getAns(data = dataDict[i]['signalData'],
indDataDict = dataDict[i]['indicatorData'])
return ans
# In[ ]:
# In[6]:
sigreq= {
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5}
}
}
}
indReqDict ={'ind_BB':df_candle[:1000]}
# In[7]:
sigAgrReq = {
'sig_BB':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5}
}
}
},
'sig_BB_2':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2}
}
}
}
}
sigAgrData = {
'sig_BB':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
},
'sig_BB_2':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
}
}
# In[ ]:
# In[8]:
ttt=signalsAgrigator(sigAgrReq)
# In[9]:
ttt.__dict__
# In[10]:
ttt.signals['sig_BB'].__dict__
# In[11]:
ttt.getAns(sigAgrData)
# In[ ]:
# In[ ]:
# In[12]:
list({'ttt':2}.keys())[0]
# In[13]:
test = sig_BB('sig_BB', sigreq)
# In[14]:
test.__dict__
# In[ ]:
# In[15]:
test.agrigateInds.__dict__
# In[16]:
ians = test.getIndAns(indReqDict)
ians
# In[17]:
test.getAns(df_candle[:100],indReqDict)
# In[ ]:
# In[ ]:

View File

@ -0,0 +1,360 @@
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import datetime
import numpy as np
import random
from signals import * #потом удалить
# In[2]:
class trandeVoter():
def __init__(self,name):
self.name = name # просто имя
self.trandeValuesList = ['up','none','down'] #словарь трегдов
self.matrixAmounts = None # матрица сумм
self.keysMatrixAmounts = None #ключи матрицы сумм, техническое поле
self.matrixProbability = None # матрица вероятностей
#функция которая создает df с заданным набором колонок и индексов. индексы - уникальные соотношения
def createDFbyNames(self, namesIndex, namesColoms,defaultValue=0.0):
df = pd.DataFrame(dict.fromkeys(namesColoms, [defaultValue]*pow(3,len(namesIndex))),
index=pd.MultiIndex.from_product([self.trandeValuesList]*len(namesIndex), names=namesIndex)
#,columns=namesColoms
)
return(df)
#создание матрицы сумм с дефолтным значением
def createMatrixAmounts(self,namesIndex: list) -> pd.DataFrame():
self.matrixAmounts = self.createDFbyNames(namesIndex,self.trandeValuesList,0)
self.keysMatrixAmounts = self.matrixAmounts.to_dict('tight')['index_names']
self.createMatrixProbability(namesIndex)
return(self.matrixAmounts)
#создание матрицы вероятностей с дефолтным значением
def createMatrixProbability(self,namesIndex: list) -> pd.DataFrame():
self.matrixProbability = self.createDFbyNames(namesIndex,self.trandeValuesList)
return(self.matrixProbability)
#установка значений в матрицы сумм. signalDecisions - значения индикаторов key:value; trande - реальное значение
def setDecisionBySignals(self,signalDecisions: dict,trande: str) -> None:
buff=[]
for i in self.keysMatrixAmounts:
buff.append(signalDecisions[i])
self.matrixAmounts.loc[tuple(buff),trande] += 1
#заполнение матрицы вероятностей вычисляемыми значениями из матрицы сумм
def generateMatrixProbability(self) -> None:
for i in range(self.matrixAmounts.shape[0]):
rowSum=sum(self.matrixAmounts.iloc[i])
self.matrixProbability.iloc[i]['up'] = (self.matrixAmounts.iloc[i]['up'] / rowSum)
self.matrixProbability.iloc[i]['none'] = self.matrixAmounts.iloc[i]['none'] / rowSum
self.matrixProbability.iloc[i]['down'] = self.matrixAmounts.iloc[i]['down'] / rowSum
#получение рещения из матрицы вероятностей по заданным значениям сигналов
def getDecisionBySignals(self,signalDecisions: dict) -> dict:
ans = {}
spliceSearch =self.matrixProbability.xs(tuple(signalDecisions.values()),
level=list(signalDecisions.keys())
)
ans['probability'] = spliceSearch.to_dict('records')[0]
ans['trande'] = spliceSearch.iloc[0].idxmax()
return ans
#получение матриц вероятностей и суммы в видей словарей
def getMatrixDict(self) -> dict:
ans={}
ans['amounts'] = self.matrixAmounts.to_dict('tight')
ans['probability'] = self.matrixProbability.to_dict('tight')
return ans
#установка матриц вероятностей и суммы в видей словарей
def setMatrixDict(self,matrixDict: dict) -> dict:
if matrixDict['amounts'] != None:
self.matrixAmounts = pd.DataFrame.from_dict(y['amounts'], orient='tight')
if matrixDict['probability'] != None:
self.matrixProbability = pd.DataFrame.from_dict(y['probability'], orient='tight')
# In[3]:
reqSig={
'BB1':{
'className':signal_BB,
'indParams':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5},
'signalParams':{'source':'close','target':'close'},
'batchSize':15
},
'BB2':{
'className':signal_BB,
'indParams':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5},
'signalParams':{'source':'close','target':'close'},
'batchSize':20
}
}
# In[4]:
reqDS={'BB1':'up','BB2':'none'}
# In[7]:
reqCreate=list(reqSig.keys())
reqCreate
# In[8]:
t=trandeVoter('piu')
o=t.createMatrixAmounts(['BB1', 'BB2'])
o
# In[9]:
for i in range(100000):
t.setDecisionBySignals({'BB1':random.choice(['up','down','none']),
'BB2':random.choice(['up','down','none'])},
random.choice(['up','down','none']))
# In[10]:
t.matrixAmounts
# In[11]:
t.generateMatrixProbability()
# In[577]:
t.matrixProbability
# In[14]:
t.setMatrixDict(y)
# In[15]:
t.getDecisionBySignals(reqDS)
# In[ ]:
# In[ ]:
# In[13]:
y = t.getMatrixDict()
y
# In[16]:
ddf = pd.DataFrame.from_dict(y['amounts'], orient='tight')
ddf
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[17]:
t.matrixProbability.iloc[0]['up'] = (t.matrixProbability.iloc[0]['up'] / (sum(t.matrixProbability.iloc[0])))
t.matrixProbability
# In[ ]:
# In[ ]:
# In[ ]:
# In[18]:
t.matrixProbability['trandе']
# In[19]:
random.choice(['up','down','none'])
# In[20]:
t.setDecisionBySignals(reqDS,'up')
# In[21]:
#t.matrixAmounts.at(bbb,'up')
t.matrixAmounts.iloc[0]
# In[22]:
for i in t.matrixAmounts.iloc[0]:
print (i)
# In[23]:
(t.matrixAmounts.iloc[0]).idxmax()
# In[24]:
t.matrixAmounts
# In[ ]:
# In[25]:
o.xs(('up','down'), level=['BB1','BB2'])['up'].iloc[0]
#oldValue = o.xs(('up','down'), level=['BB1','BB2'])['up']
#o=o.replace(oldValue,oldValue.iloc[0]+1)
#o.xs(('up','down'), level=['BB1','BB2'])
# In[26]:
o.xs(('up','down'), level=['BB1','BB2'], drop_level=False)#.iloc[0].loc['up']=2#.at['up']=4
# In[27]:
o.xs(('up','down'), level=['BB1','BB2']).iloc[0].at['up']
# In[28]:
o.loc['up'].loc['down']
# In[29]:
bbb=tuple(['up','down'])
bbb
# In[30]:
o.loc[bbb,]
# In[31]:
o.at[bbb, 'up']+=1
o
# In[32]:
o.loc[bbb]
# In[33]:
dict(zip(['a','b','c'], [1,2,3]))
# In[ ]:

View File

@ -0,0 +1,427 @@
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import datetime
import numpy as np
from signals import * #потом удалить
# In[2]:
class voter_v2():
def __init__(self,name):
self.name=name
pass
def createPredictMatrixBySignals(self,signalsName):
pass
# In[ ]:
# In[3]:
reqSig={
'BB1':{
'className':signal_BB,
'indParams':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5},
'signalParams':{'source':'close','target':'close'},
'batchSize':15
},
'BB2':{
'className':signal_BB,
'indParams':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5},
'signalParams':{'source':'close','target':'close'},
'batchSize':20
}
}
# In[4]:
reqCreate=reqSig.keys()
reqCreate
# In[5]:
class Voter():
def __init__ (self, name=''):
self.name=name
self.mop={
'up': pd.DataFrame(),
'down':pd.DataFrame(),
'none':pd.DataFrame()
}
self.value={}
self.decision=''
self.real_decision=''
self.keys=[]
self.slice_dict={}
def addValue(self, dic_value):
self.value=dic_value
self.checkForNew()
self.setSlice()
self.getDecision()
def checkForNew(self):
if not (list(self.value.keys()) == self.keys):
self.createNewMop(list(self.value.keys()))
def createNewMop(self,missing_indicators):
print('reassembly mop')
new_columns= (missing_indicators)
#new_columns=new_columns.append(['value','p'])
n=len(new_columns)
start_value=-1
variator=3
new_lst=[]
buf_lst=[]
for i in range(n):
buf_lst.append(start_value)
for i in range(pow(variator,n)):
new_lst.append(buf_lst.copy())
for j in range(n):
for i in range(len(new_lst)):
dob_iterator=(i // pow(variator,j)) % variator
new_lst[i][j]=new_lst[i][j] + dob_iterator
#print (new_columns)
self.keys=new_columns
new_columns = new_columns+['amount']+['percentage']
for i in new_lst:
i = i.extend([0,0])
#i = i.append(0)
#print(new_lst)
#print(new_columns)
new_df=pd.DataFrame(new_lst,columns=new_columns)
self.mop['up']=pd.DataFrame.from_dict(new_df.to_dict())
self.mop['down']=pd.DataFrame.from_dict(new_df.to_dict())
self.mop['none']=pd.DataFrame.from_dict(new_df.to_dict())
def setSlice(self):
row_flg=True
self.slice_dict={}
for j in self.mop.keys():
for index, row in self.mop[j].iterrows():
for key, value in self.value.items():
if value != row[key]:
#print('fasle ',key,value,row[key])
row_flg=False
break
if row_flg:
self.slice_dict[j]=dict(row)
#print(j,dict(row))
row_flg=True
def getDecision (self):
max_value=0
for key, value in self.slice_dict.items():
if value['amount'] >= max_value:
max_value = value['amount']
self.decision = key
return self.decision
def setDecision (self,real_decision):
self.real_decision=real_decision
self.updMop()
self.slice_dict[real_decision]['amount']+=1
def updMop(self):
row_flg=True
for index, row in self.mop[self.real_decision].iterrows():
for key, value in self.value.items():
if value != row[key]:
row_flg=False
break
if row_flg:
#self.slice_dict[j]=dict(row)
row['amount']=row['amount']+1
row_flg=True
# In[6]:
test_dic_value_1={'lupa':1 }
test_dic_value_2={'lupa':1 , 'pupa':1}
test_dic_value_3={'lupa':1 , 'pupa':1 , 'zalupa':1 , 'zapupa':1 }
test_dic_value_4={'lupa':1 , 'pupa':1 , 'zalupa':1 , 'zapupa':-1 }
# In[7]:
test=Voter('huita')
test.addValue(test_dic_value_2)
test.decision
test.getDecision()
# In[8]:
test.setDecision('down')
test.getDecision()
# In[9]:
test.slice_dict
# In[ ]:
# In[10]:
import pickle
# In[11]:
dictionary_data = {"a": 1, "b": 2}
a_file = open("data.pkl", "wb")
pickle.dump(dictionary_data, a_file)
a_file.close()
a_file = open("data.pkl", "rb")
output = pickle.load(a_file)
print(output)
a_file.close()
# In[ ]:
# In[ ]:
# In[12]:
arrays = [
["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"],
["one", "two", "one", "two", "one", "two", "one", "two"],
]
tuples = list(zip(*arrays))
tuples
# In[13]:
index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"])
# In[14]:
s = pd.DataFrame(np.random.randn(8), index=index)
s
# In[15]:
s.to_dict()
# In[16]:
s.loc(('bar', 'one'))
# In[18]:
iterables = [["up", "down", "none"], ["up", "down", "none"]]
df = pd.DataFrame({'col1': np.random.randn(9),'col2': np.random.randn(9)}, index=pd.MultiIndex.from_product(iterables, names=["first", "second"]))
df
# In[19]:
df.__dict__
# In[ ]:
# In[ ]:
# In[20]:
def createDF(namesIndex, namesColoms):
trandeValuesList = ['up','none','down']
colomsName_lvl = ['trande','amaunt','probability']
#micolumns = pd.MultiIndex.from_tuples(
#[('amaunt', 'up'), ('amaunt', 'none'), ('amaunt', 'down'), ('trande',),('probability',)], names=["lvl0", "lvl1"]
#)
df = pd.DataFrame({
'trande': [None]*pow(3,len(namesIndex)),
'amaunt': [None]*pow(3,len(namesIndex)),
'probability': [None]*pow(3,len(namesIndex))
},
index=pd.MultiIndex.from_product([trandeValuesList]*len(namesIndex), names=namesIndex)
,columns=namesColoms
)
return(df)
# In[21]:
dd=createDF( ['1','2','3'],['trande','amaunt','probability'] )
dd
# In[22]:
df.xs(('up','down'), level=['first','second'])
# In[23]:
dd['trande']
# In[24]:
tvl = ['up','none','down']
colomsName_lvl = ['trande','amaunt','probability']
# In[25]:
tuplesCol = list(zip(['amaunt']*3,tvl))
tuplesCol
# In[26]:
df.loc['up','down']
# In[27]:
df.xs(('up','down'), level=['first','second']).iloc[0]
# In[28]:
df_d=df.to_dict('tight')
df_d
# In[29]:
df_d['index_names']
# In[30]:
ddf = pd.DataFrame.from_dict(df_d, orient='tight')
ddf
# In[31]:
tuple([1,2,3])
# In[32]:
ddf.xs(('up','down'), level=['first','second']).iloc[0]
# In[ ]:

View File

@ -0,0 +1,221 @@
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import datetime
import numpy as np
import plotly as pl
import plotly.graph_objs as go
import matplotlib.pyplot as plt
import random
import datetime
import matplotlib.dates as mdates
import matplotlib.pyplot as plt
import plotly
import plotly.graph_objs as go
from plotly.offline import init_notebook_mode, iplot
from plotly.subplots import make_subplots
init_notebook_mode()
#import CoreTraidMath
import plotly.express as px
# In[ ]:
# In[2]:
class agrigateFig():
def __init__(self,data=[],needDraw=False ,subplot_titles=None):
self.data=data
self.ans=self.getAgrPlt()
if needDraw:
self.subplot_titles=subplot_titles
self.fig=coreDraw(self.ans,True,self.subplot_titles)
def getAgrPlt(self):
count=0
ans=[]
for i in self.data:
count=count+1
if type(i)==list:
for g in i:
for j in g.figDict:
ans.append(j)
ans[-1]['row']=count
else:
for j in i.figDict:
ans.append(j)
ans[-1]['row']=count
return ans
# In[3]:
class corePlt():
def __init__(self, params={
'vtype':'',
'df':pd.DataFrame(),
'row':1,
'col':1,
'name':''
}):
self.vtype=params['vtype']
self.df=params['df']
self.row=params['row']
self.col=params['col']
self.name=params['name']
if 'colorType' in params.keys():
self.colorType=params['colorType']
class coreDraw():
def __init__(self, data=[],needShow=False,subplot_titles={}):
self.data=self.getPlts(data)
self.needShow=needShow
self.subplot_titles=subplot_titles
self.ans=self.getAns()
def getBarColorList(self,l,colorType):
if colorType=='diffAbs':
ans=['green']
for i in range(1,len(l)):
if abs(l[i])>abs(l[i-1]):
ans.append('green')
else:
ans.append('red')
elif colorType=='diff':
ans=['green']
for i in range(1,len(l)):
if (l[i])>(l[i-1]):
ans.append('green')
else:
ans.append('red')
elif colorType=='normal':
ans=[]
for i in range(len(l)):
ans.append('gray')
return ans
def getPlts(self, data):
ans=None
if type(data)==list:
ans=[]
for i in data:
ans.append(corePlt(i))
else:
ans=[corePlt(data)]
return ans
def getAns(self):
'''
data list
vtype
df
row=1
col=1
name
'''
ans=None
maxRow=1
maxCol=1
for i in self.data:
if i.row > maxRow:
maxRow =i.row
if i.col > maxCol:
maxCol =i.col
fig = make_subplots(
rows=maxRow,
cols=maxCol,
shared_xaxes=True,
vertical_spacing=0.1,
shared_yaxes=True,
#horizontal_spacing=0.02,
#column_widths=[]
subplot_titles=self.subplot_titles
)
fig.update_layout(xaxis_rangeslider_visible=False)
fig.update_layout(barmode='relative')
for i in self.data:
if i.vtype=='Scatter':
fig.add_trace(go.Scatter(x=i.df['date'],y=i.df['value'],name=i.name), row=i.row, col=i.col)
elif i.vtype=='OCHL':
fig.add_trace(go.Candlestick(
x=i.df['date'],
open=i.df['open'],
high=i.df['high'],
low=i.df['low'],
close=i.df['close'],
name=i.name),
row=i.row, col=i.col
)
elif i.vtype=='Bars':
for j in i.df.keys():
if j!='date':
try:
colorType=i.colorType
except:
colorType='normal'
colors=self.getBarColorList(i.df[j],colorType)
fig.add_trace(go.Bar(x=i.df['date'], y=i.df[j],name=j,marker_color=colors),row=i.row, col=i.col)
ans=fig
if self.needShow:
plotly.offline.iplot(fig)
return ans
# In[ ]:

View File

@ -0,0 +1,145 @@
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import pandas as pd
import datetime
import numpy as np
import uuid
# In[2]:
class DealManager():
def __init__(self):
self.commission=0.04
self.columns=['uuid','figi','amount','startPrice','profit']
self.deals = pd.DataFrame(columns=self.columns)
self.deals = self.deals.set_index('uuid')
def findDealByPriceAndFig(self,price,figi):
ans=None
for i in range(self.deals.shape[0]):
if self.deals.iloc[i].startPrice == price and self.deals.iloc[i].figi == figi:
ans = self.deals.iloc[i].name
break
return ans
def openDeal(self,figi,startPrice,amount=1):
desiredDeal=self.findDealByPriceAndFig(startPrice,figi)
if desiredDeal == None:
newDealDict={
'uuid':[str(uuid.uuid4())],
'figi':[figi],
'startPrice':[startPrice],
'amount':[amount]
}
#newDealDict['profit']=[startPrice*pow(1+self.commission,2)]
newDeal=pd.DataFrame.from_dict(newDealDict).set_index('uuid')
self.deals=pd.concat([self.deals, newDeal])
else:
self.deals.at[desiredDeal,'amount'] += amount
def closeDeal(self,uuid,amount):
desiredDeal=self.deals.loc[uuid]
if desiredDeal.amount - amount == 0:
self.deals = self.deals.drop(labels = [uuid],axis = 0)
else:
self.deals.at[uuid,'amount'] -= amount
#self.deals.loc[uuid].amount = desiredDeal.amount - amount
# In[3]:
t=DealManager()
t.__dict__
# In[ ]:
# In[4]:
t.deals.shape[0]
# In[5]:
t.openDeal('huigi',100,1)
t.openDeal('huigi',100,3)
t.openDeal('huigi1',100,3)
t.openDeal('huigi1',200,3)
# In[6]:
t.deals
# In[7]:
t.deals[t.deals.figi == 'huigi1']
# In[ ]:
# In[8]:
for i in range(t.deals.shape[0]):
print(t.deals.iloc[i])
# In[9]:
t.findDealByPriceAndFig
# In[10]:
t.closeDeal('78228979-3daf-470a-9c2a-8db180c8c3b0',1)
t.deals
# In[11]:
t.deals.iloc[0].name
# In[12]:
a=2
a==None
# In[ ]:

View File

@ -0,0 +1,358 @@
#!/usr/bin/env python
# coding: utf-8
# In[4]:
import pandas as pd
import datetime
import numpy as np
import pickle
from signals import *
from dealManager import *
from trandeVoter import *
from riskManager import riskManager
# In[5]:
df_candle = pd.read_csv("../data/EURUSD_price_candlestick.csv")
df_candle.rename(columns={'timestamp': 'date'}, inplace=True)
df_candle
# In[6]:
class decsionManager():
def __init__(self,name):
self.name = name
self.RM = riskManager()
self.DM = DealManager()
self.TV = trandeVoter(name)
self.SA = signalAgrigator()
pass
#вытащенный из signalAgrigator метод теста для сигналов
def getSignalTest(self,data: pd.DataFrame(),reqSig: dict, batchSize=30, dataType='candel') -> dict:
self.SA.mode = 'retroFast'
t.SA.createSingnalInstances(
data = data,
dictAgrigSignal = reqSig,
dataType='candel',
batchSize=30
)
ans = t.SA.getAns(data)
return ans
#метод для генерации матрицы вероятностей.
def generateMatrixProbability(self,
data: pd.DataFrame(),
reqSig: dict,
target: str,
batchSize=30,
#dataType='candel'
):
data=data.reset_index(drop=True)
t.SA.createSingnalInstances(
data = data,
dictAgrigSignal = reqSig,
dataType='candel',
batchSize=batchSize
)
self.TV.createMatrixAmounts(reqSig.keys())
for i in range(data.shape[0]-batchSize-1):
sigAns=self.SA.getAns(data[i:i+batchSize])
rightAns=self.getRetroStepAns(data[target][i],data[target][i+1])
self.TV.setDecisionBySignals(self.KostilEbaniy(sigAns),rightAns)
self.TV.generateMatrixProbability()
#без коментариев блять
def KostilEbaniy(self,d):
ans={}
for i in d.keys():
if d[i] == 0:
ans[i] = 'none'
elif d[i] == 1:
ans[i] = 'up'
elif d[i] == -1:
ans[i] = 'down'
return ans
#тож понятная хуита
def getRetroStepAns(self, value1,value2):
if value1 == value2:
ans = 'none'
elif value1 < value2:
ans = 'up'
else:
ans = 'down'
return ans
#метод для онлай получения решения по сигналу
def getSignal(self,data: pd.DataFrame(),reqSig: dict, dataType='candel') -> dict:
data=data.reset_index(drop=True)
self.SA.mode = 'online'
t.SA.createSingnalInstances(
data = data,
dictAgrigSignal = reqSig,
dataType='candel',
batchSize=30
)
ans = t.SA.getAns(data)
return ans
#Создание сигналов. Вызывать перед getOnlineAns
def crateSignals(self,data: pd.DataFrame(),reqSig: dict, dataType='candel'):
data=data.reset_index(drop=True)
self.SA.mode = 'online'
t.SA.createSingnalInstances(
data = data,
dictAgrigSignal = reqSig,
dataType='candel',
batchSize=30
)
def getOnlineAns(self,data: pd.DataFrame(),price):
sigAns = self.SA.getAns(data)
prob = self.TV.getDecisionBySignals(sigAns)
ans = self.RM.getDecision(sigAns,prob,price)
return ans
# In[ ]:
# In[7]:
t= decsionManager('TEST')
# In[8]:
t.__dict__
# In[9]:
reqSig={
'BB1':{
'className':signal_BB,
'indParams':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5},
'signalParams':{'source':'close','target':'close'},
'batchSize':15
},
'BB2':{
'className':signal_BB,
'indParams':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5},
'signalParams':{'source':'close','target':'close'},
'batchSize':20
}
}
# In[10]:
reqSig.keys()
# In[11]:
t.SA.__dict__
# In[12]:
t.generateMatrixProbability(df_candle[:10000],reqSig,'close',40)
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[13]:
mop = t.TV.matrixProbability
mop
# In[ ]:
# In[ ]:
# In[14]:
t.getSignal(df_candle[:10000],reqSig)
# In[15]:
t.getSignalTest(df_candle[:10000],reqSig,40)
# In[ ]:
# In[16]:
t.SA.createSingnalInstances(
data = df_candle[:10000],
dictAgrigSignal = reqSig,
dataType='candel',
batchSize=30
)
# In[ ]:
# In[ ]:
# In[ ]:
# In[17]:
reqSig={
'BB1':{
'className':signal_BB,
'indParams':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5},
'signalParams':{'source':'close','target':'close'},
'batchSize':15
},
'BB2':{
'className':signal_BB,
'indParams':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5},
'signalParams':{'source':'close','target':'close'},
'batchSize':20
}
}
# In[18]:
t=decsionManager(reqSig)
# In[ ]:
# In[ ]:
import pickle
# In[ ]:
dictionary_data = {"a": 1, "b": 2}
a_file = open("data.pkl", "wb")
pickle.dump(reqSig, a_file)
a_file.close()
a_file = open("data.pkl", "rb")
output = pickle.load(a_file)
print(output)
a_file.close()
# In[ ]:

View File

@ -0,0 +1,382 @@
#!/usr/bin/env python
# coding: utf-8
# In[5]:
import os
import pandas as pd
import datetime
import numpy as np
from tqdm import tqdm
from indicators_v2 import *
from signals_v2 import *
from dealManager import *
from trandeVoter import *
from riskManager import *
import pickle
# In[6]:
df_candle = pd.read_csv("../data/EURUSD_price_candlestick.csv")
df_candle.rename(columns={'timestamp': 'date'}, inplace=True)
df_candle
# In[7]:
df_candle['close']
# In[8]:
class decsionManager:
'''
sigAgrReq = {
'sig_BB':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2.5}
}
}
},
'sig_BB_2':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2}
}
}
}
}
sigAgrData = {
'sig_BB':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
},
'sig_BB_2':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
}
}
sigAgrRetroTemplate = {
'sig_BB':{
'signalData': None,
'indicatorData' :{'ind_BB': None}
},
'sig_BB_2':{
'signalData': None,
'indicatorData' :{'ind_BB': None}
}
}
'''
def __init__(self,name, sigDict: dict):
self.RM = riskManager()
self.DM = DealManager()
self.TV = trandeVoter(name)
self.SA = signalsAgrigator(sigDict)
self.sigDict = sigDict
def getOnlineAns(self, signalsAns: dict, price: float) -> dict:
probabilityDecsion = self.TV.getDecisionBySignals(self.getSignalsAns(signalsAns))
RMD = self.RM.getDecision(probabilityDecision=probabilityDecsion, price=price, deals = self.DM.deals)
return RMD
def getSignalsAns(self, signalsDataDict: dict) -> dict:
return self.SA.getAns(signalsDataDict)
def getRightAns(self,value_1, value_2):
ans=''
if value_1 > value_2:
ans = 'down'
elif value_1 < value_2:
ans = 'up'
else:
ans = 'none'
return ans
def getRetroTrendAns(self, retroTemplateDict: dict, data: pd.DataFrame(), window: int) -> list:
reqSig={}
ans = {
'signalsAns':[],
'rightAns':[]
}
target = ''
for k in tqdm(range(data.shape[0]-window-1)):
for i in retroTemplateDict.keys():
reqSig[i] = {'signalData': data[k:k+window], 'indicatorData':{}}
target = self.SA.signals[i].params['target']
for j in retroTemplateDict[i]['indicatorData'].keys():
reqSig[i]['indicatorData'][j] = data[k:k+window]
sigAns = self.getSignalsAns(reqSig)
rightAns = self.getRightAns(data[target][k], data[target][k+1])
ans['signalsAns'].append(sigAns)
ans['rightAns'].append(rightAns)
return ans
def generateMatrixProbabilityFromDict(self, dictSignals: dict) -> dict:
self.TV.createMatrixAmounts(dictSignals['signalsAns'][0].keys())
for i in range(len(dictSignals['signalsAns'])):
self.TV.setDecisionBySignals(signalDecisions = dictSignals['signalsAns'][i],
trande = dictSignals['rightAns'][i])
self.TV.generateMatrixProbability()
def createDump(self,postfix='') -> str:
dataDict = {
'RM':self.RM,
'DM':self.DM,
'TV':self.TV,
'SA':self.SA,
'sigDict':self.sigDict
}
fileName='data_'+postfix+'.pickle'
with open(fileName, 'wb') as f:
pickle.dump(dataDict, f)
return os.path.abspath(fileName)
def loadDump(self,path: str) -> None:
with open(path, 'rb') as f:
dataDict = pickle.load(f)
self.RM = dataDict['RM']
self.DM = dataDict['DM']
self.TV = dataDict['TV']
self.SA = dataDict['SA']
self.sigDict = dataDict['sigDict']
# In[9]:
sigAgrReq = {
'sig_BB':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2.5}
}
}
},
'sig_BB_2':{
'className':sig_BB,
'params':{'source':'close','target':'close'},
'indicators':{
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':30,'valueType':'close','kDev':2}
}
}
}
}
sigAgrData = {
'sig_BB':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
},
'sig_BB_2':{
'signalData': df_candle[990:1000],
'indicatorData' :{'ind_BB': df_candle[:1000]}
}
}
sigAgrRetroTemplate = {
'sig_BB':{
'signalData': None,
'indicatorData' :{'ind_BB': None}
},
'sig_BB_2':{
'signalData': None,
'indicatorData' :{'ind_BB': None}
}
}
# In[10]:
test = decsionManager('Pipa', sigAgrReq)
# In[11]:
test.__dict__
# In[12]:
test.TV.__dict__
# In[13]:
test.SA.signals['sig_BB'].params['target']
# In[14]:
test.getSignalsAns(sigAgrData)
# In[15]:
#test.loadDump('C:\\Users\\Redsandy\\PyProj\\Trade\\MVP\\data_pupa.pickle')
# In[16]:
uuu = test.getRetroTrendAns(sigAgrRetroTemplate,df_candle[:5000],40)
uuu
# In[17]:
test.generateMatrixProbabilityFromDict(uuu)
# In[18]:
test.TV.__dict__
# In[19]:
test.getOnlineAns(sigAgrData, 0.0)
# In[20]:
(test.DM.deals).shape
# In[21]:
test.createDump('pupa')
# In[ ]:
# In[22]:
with open('C:\\Users\\Redsandy\\PyProj\\Trade\\MVP\\data_pupa.pickle', 'rb') as f:
data_new = pickle.load(f)
data_new
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:
# In[ ]:

View File

@ -0,0 +1,194 @@
#!/usr/bin/env python
# coding: utf-8
# In[8]:
import pandas as pd
import datetime
import numpy as np
import CoreTraidMath
# In[9]:
df_candle = pd.read_csv(r"../data/EURUSD_price_candlestick.csv")
df_candle.rename(columns={'timestamp': 'date'}, inplace=True)
df_candle
# In[10]:
class coreIndicator():
def __init__(self,options: dict, dataType: str = None, predictType: str = None, name: str = None):
self.options = options
self.dataType = dataType #ochl
self.predictType = predictType #trend
def getAns(self, data: pd.DataFrame() ):
return "ERROR"
# In[11]:
class ind_BB(coreIndicator):
"""
options
MeanType -> SMA
window -> int
valueType -> str: low, high, open, close
kDev -> float
"""
def __init__(self,options: dict,name = None):
super().__init__(
options = options,
dataType = 'ochl',
predictType = 'trend',
name = name
)
def getAns(self, data: pd.DataFrame()):
data=data.reset_index(drop=True)
ans={}
opMA={'dataType':'ohcl',
'action':'findMean',
'actionOptions':{
'MeanType':self.options['MeanType'],
'valueType':self.options['valueType'],
'window':self.options['window']
}
}
ans['BB']=CoreTraidMath.CoreMath(data,opMA).ans
opSTD={'dataType':'ohcl',
'action':'findSTD',
'actionOptions':{'valueType':self.options['valueType'],'window':self.options['window']}
}
ans['STD']=CoreTraidMath.CoreMath(data,opSTD).ans
ans['pSTD']=ans['BB']+ans['STD']*self.options['kDev']
ans['mSTD']=ans['BB']-ans['STD']*self.options['kDev']
ans['x']=np.array(data['date'][self.options['window']-1:].to_list())
self.ans= ans
return ans
# In[12]:
class indicatorsAgrigator:
def __init__ (self,indDict={}):
self.indDict = indDict
self.indInst = {}
self.ans={}
self.createIndicatorsInstance()
def createIndicatorsInstance(self):
for i in self.indDict.keys():
self.indInst[i]=self.indDict[i]['className'](self.indDict[i]['params'])
def getAns(self,dataDict={}):
ans={}
for i in dataDict.keys():
ans[i] = self.indInst[i].getAns(dataDict[i])
return ans
# In[13]:
indicators = {
'ind_BB':{
'className':ind_BB,
'params':{'MeanType':'SMA','window':15,'valueType':'close','kDev':2.5}
}
}
dataDic={
'ind_BB':df_candle[:1000]
}
# In[ ]:
# In[14]:
ia= indicatorsAgrigator(indicators)
# In[15]:
ia.__dict__
# In[16]:
ia.indInst['ind_BB'].__dict__
# In[17]:
ia.getAns(dataDict=dataDic)
# In[ ]:
# In[ ]:
# In[18]:
op = {'MeanType':'SMA','window':5,'valueType':'low','kDev':2}
# In[19]:
t = ind_BB(op)
# In[20]:
t.getAns(df_candle[:100])
# In[21]:
t.__dict__
# In[ ]:
# In[ ]:

26
poetry.lock generated
View File

@ -1,4 +1,4 @@
# This file is automatically @generated by Poetry 1.7.1 and should not be changed by hand.
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
[[package]]
name = "anyio"
@ -1099,6 +1099,7 @@ optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*"
files = [
{file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"},
{file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"},
]
[[package]]
@ -1598,6 +1599,16 @@ files = [
{file = "MarkupSafe-2.1.3-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5bbe06f8eeafd38e5d0a4894ffec89378b6c6a625ff57e3028921f8ff59318ac"},
{file = "MarkupSafe-2.1.3-cp311-cp311-win32.whl", hash = "sha256:dd15ff04ffd7e05ffcb7fe79f1b98041b8ea30ae9234aed2a9168b5797c3effb"},
{file = "MarkupSafe-2.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:134da1eca9ec0ae528110ccc9e48041e0828d79f24121a1a146161103c76e686"},
{file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:f698de3fd0c4e6972b92290a45bd9b1536bffe8c6759c62471efaa8acb4c37bc"},
{file = "MarkupSafe-2.1.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:aa57bd9cf8ae831a362185ee444e15a93ecb2e344c8e52e4d721ea3ab6ef1823"},
{file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ffcc3f7c66b5f5b7931a5aa68fc9cecc51e685ef90282f4a82f0f5e9b704ad11"},
{file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47d4f1c5f80fc62fdd7777d0d40a2e9dda0a05883ab11374334f6c4de38adffd"},
{file = "MarkupSafe-2.1.3-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1f67c7038d560d92149c060157d623c542173016c4babc0c1913cca0564b9939"},
{file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9aad3c1755095ce347e26488214ef77e0485a3c34a50c5a5e2471dff60b9dd9c"},
{file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:14ff806850827afd6b07a5f32bd917fb7f45b046ba40c57abdb636674a8b559c"},
{file = "MarkupSafe-2.1.3-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8f9293864fe09b8149f0cc42ce56e3f0e54de883a9de90cd427f191c346eb2e1"},
{file = "MarkupSafe-2.1.3-cp312-cp312-win32.whl", hash = "sha256:715d3562f79d540f251b99ebd6d8baa547118974341db04f5ad06d5ea3eb8007"},
{file = "MarkupSafe-2.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:1b8dd8c3fd14349433c79fa8abeb573a55fc0fdd769133baac1f5e07abf54aeb"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e254ae696c88d98da6555f5ace2279cf7cd5b3f52be2b5cf97feafe883b58d2"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0932dc158471523c9637e807d9bfb93e06a95cbf010f1a38b98623b929ef2b"},
{file = "MarkupSafe-2.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9402b03f1a1b4dc4c19845e5c749e3ab82d5078d16a2a4c2cd2df62d57bb0707"},
@ -1754,13 +1765,13 @@ test = ["flaky", "ipykernel (>=6.19.3)", "ipython", "ipywidgets", "nbconvert (>=
[[package]]
name = "nbconvert"
version = "7.12.0"
description = "Converting Jupyter Notebooks"
version = "7.16.2"
description = "Converting Jupyter Notebooks (.ipynb files) to other formats. Output formats include asciidoc, html, latex, markdown, pdf, py, rst, script. nbconvert can be used both as a Python library (`import nbconvert`) or as a command line tool (invoked as `jupyter nbconvert ...`)."
optional = false
python-versions = ">=3.8"
files = [
{file = "nbconvert-7.12.0-py3-none-any.whl", hash = "sha256:5b6c848194d270cc55fb691169202620d7b52a12fec259508d142ecbe4219310"},
{file = "nbconvert-7.12.0.tar.gz", hash = "sha256:b1564bd89f69a74cd6398b0362da94db07aafb991b7857216a766204a71612c0"},
{file = "nbconvert-7.16.2-py3-none-any.whl", hash = "sha256:0c01c23981a8de0220255706822c40b751438e32467d6a686e26be08ba784382"},
{file = "nbconvert-7.16.2.tar.gz", hash = "sha256:8310edd41e1c43947e4ecf16614c61469ebc024898eb808cce0999860fc9fb16"},
]
[package.dependencies]
@ -1787,7 +1798,7 @@ docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sp
qtpdf = ["nbconvert[qtpng]"]
qtpng = ["pyqtwebengine (>=5.15)"]
serve = ["tornado (>=6.1)"]
test = ["flaky", "ipykernel", "ipywidgets (>=7)", "pytest"]
test = ["flaky", "ipykernel", "ipywidgets (>=7.5)", "pytest"]
webpdf = ["playwright"]
[[package]]
@ -2483,6 +2494,7 @@ files = [
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
@ -3386,4 +3398,4 @@ testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "p
[metadata]
lock-version = "2.0"
python-versions = ">=3.9,<3.13"
content-hash = "29bb47a642b8c954617e72b3b407196c5cc1e13c7eb483c712538b08c3d4b8e7"
content-hash = "8e185f19d0891fa375ca3e5d878742e677c332f20e5969c6e058af9ba5c41e2e"

View File

@ -21,6 +21,7 @@ black = "^23.12.0"
tinkoff-grpc = {git = "git@github.com:strategy155/tinkoff_grpc.git", branch="master"}
python-dotenv = "^1.0.0"
jupyterlab = "^4.0.9"
nbconvert = "^7.16.2"
[tool.poetry.dev-dependencies]