Add files via upload
This commit is contained in:
parent
dee6205ab6
commit
33848db972
145
Core/Ind_Stochastic.py
Normal file
145
Core/Ind_Stochastic.py
Normal file
@ -0,0 +1,145 @@
|
||||
|
||||
import pandas as pd
|
||||
import datetime
|
||||
import numpy as np
|
||||
import plotly as pl
|
||||
import plotly.graph_objs as go
|
||||
import matplotlib.pyplot as plt
|
||||
import math
|
||||
import scipy
|
||||
import random
|
||||
import statistics
|
||||
|
||||
|
||||
import datetime
|
||||
import matplotlib.dates as mdates
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
import mplfinance as mpf
|
||||
|
||||
import plotly
|
||||
#import plotly.plotly as py
|
||||
import plotly.graph_objs as go
|
||||
# these two lines allow your code to show up in a notebook
|
||||
from plotly.offline import init_notebook_mode, iplot
|
||||
from plotly.subplots import make_subplots
|
||||
init_notebook_mode()
|
||||
|
||||
import CoreTraidMath
|
||||
import CoreDraw
|
||||
|
||||
class Stochastic:
|
||||
|
||||
def __init__(self, base_df, options={
|
||||
'dataType':'ohcl',
|
||||
'window':14,
|
||||
'windowSMA':5
|
||||
}, needShow=False,showOnlyIndex=True
|
||||
):
|
||||
|
||||
self.base_df=base_df.reset_index(drop=True)
|
||||
self.options=options
|
||||
|
||||
self.ans=self.getAns()
|
||||
if needShow:
|
||||
self.fig=self.pltShow(showOnlyIndex)
|
||||
|
||||
def getKn(self):
|
||||
ans={}
|
||||
y=np.asarray([])
|
||||
x=np.asarray([])
|
||||
for i in range(self.options['window'],self.base_df.shape[0]):
|
||||
minValue=min(self.base_df['low'][i-self.options['window']:i])
|
||||
maxValue=max(self.base_df['high'][i-self.options['window']:i])
|
||||
|
||||
y=np.append(y,(self.base_df['close'][i-1]-minValue)/(maxValue-minValue))
|
||||
x=np.append(x,self.base_df['date'][i-1])
|
||||
#print(i,minValue,maxValue,self.base_df[self.options['colName']['close']][i],y[-1])
|
||||
ans['y'],ans['x']=y,x
|
||||
|
||||
|
||||
|
||||
return ans
|
||||
|
||||
|
||||
def getSMA(self,col):
|
||||
ans=None
|
||||
ser = pd.Series(col, copy=False)
|
||||
op={'dataType':'series',
|
||||
'action':'findMean',
|
||||
'actionOptions':{'MeanType':'SMA','window':self.options['windowSMA']}
|
||||
}
|
||||
ans=np.asarray(CoreTraidMath.CoreMath(ser,op).ans)
|
||||
return ans
|
||||
#return np.convolve(col, np.ones(self.options['windowSMA']), 'valid') /self.options['windowSMA']
|
||||
|
||||
|
||||
|
||||
|
||||
def getDn(self,col):
|
||||
ans={}
|
||||
y=np.asarray([])
|
||||
x=np.asarray([])
|
||||
for i in range(self.options['windowSMA'],len(col['y'])):
|
||||
y=np.append(y, self.getSMA(col['y'][i-self.options['windowSMA']:i]))
|
||||
x=np.append(x,col['x'][i])
|
||||
|
||||
ans['y'],ans['x']=y,x
|
||||
return ans
|
||||
|
||||
def getAns(self):
|
||||
ans={}
|
||||
ans['Kn']=self.getKn()
|
||||
ans['Dn']=self.getDn(ans['Kn'])
|
||||
|
||||
#print(ans)
|
||||
return(ans)
|
||||
|
||||
|
||||
|
||||
def pltShow(self,showOnlyIndex):
|
||||
ans=None
|
||||
|
||||
|
||||
|
||||
req=[]
|
||||
|
||||
row=1
|
||||
if not showOnlyIndex:
|
||||
|
||||
row=2
|
||||
req.append({
|
||||
'vtype':'OCHL',
|
||||
'df':self.base_df,
|
||||
'row':1,
|
||||
'col':1,
|
||||
'name':'OHCL'
|
||||
|
||||
})
|
||||
|
||||
req.append({
|
||||
'vtype':'Scatter',
|
||||
'df':pd.DataFrame(
|
||||
{'value':self.ans['Kn']['y'],'date':self.ans['Kn']['x']}) ,
|
||||
'row':row,
|
||||
'col':1,
|
||||
'name':'Kn'
|
||||
|
||||
})
|
||||
req.append({
|
||||
'vtype':'Scatter',
|
||||
'df':pd.DataFrame(
|
||||
{'value':self.ans['Dn']['y'],'date':self.ans['Dn']['x']}) ,
|
||||
'row':row,
|
||||
'col':1,
|
||||
'name':'Dn'
|
||||
|
||||
})
|
||||
|
||||
|
||||
|
||||
|
||||
ans = CoreDraw.coreDraw(req,True)
|
||||
|
||||
return ans
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user